Spaces:
Runtime error
Runtime error
| """ | |
| Various utilities for neural networks. | |
| """ | |
| import math | |
| import torch as th | |
| import torch.nn as nn | |
| class SiLU(nn.Module): | |
| def forward(self, x): | |
| return x * th.sigmoid(x) | |
| class GroupNorm32(nn.GroupNorm): | |
| def forward(self, x): | |
| return super().forward(x.float()).type(x.dtype) | |
| def conv_nd(dims, *args, **kwargs): | |
| """ | |
| Create a 1D, 2D, or 3D convolution module. | |
| """ | |
| if dims == 1: | |
| return nn.Conv1d(*args, **kwargs) | |
| elif dims == 2: | |
| return nn.Conv2d(*args, **kwargs) | |
| elif dims == 3: | |
| return nn.Conv3d(*args, **kwargs) | |
| raise ValueError(f"unsupported dimensions: {dims}") | |
| def linear(*args, **kwargs): | |
| """ | |
| Create a linear module. | |
| """ | |
| return nn.Linear(*args, **kwargs) | |
| def avg_pool_nd(dims, *args, **kwargs): | |
| """ | |
| Create a 1D, 2D, or 3D average pooling module. | |
| """ | |
| if dims == 1: | |
| return nn.AvgPool1d(*args, **kwargs) | |
| elif dims == 2: | |
| return nn.AvgPool2d(*args, **kwargs) | |
| elif dims == 3: | |
| return nn.AvgPool3d(*args, **kwargs) | |
| raise ValueError(f"unsupported dimensions: {dims}") | |
| def update_ema(target_params, source_params, rate=0.99): | |
| """ | |
| Update target parameters to be closer to those of source parameters using | |
| an exponential moving average. | |
| :param target_params: the target parameter sequence. | |
| :param source_params: the source parameter sequence. | |
| :param rate: the EMA rate (closer to 1 means slower). | |
| """ | |
| for targ, src in zip(target_params, source_params): | |
| targ.detach().mul_(rate).add_(src, alpha=1 - rate) | |
| def zero_module(module): | |
| """ | |
| Zero out the parameters of a module and return it. | |
| """ | |
| for p in module.parameters(): | |
| p.detach().zero_() | |
| return module | |
| def scale_module(module, scale): | |
| """ | |
| Scale the parameters of a module and return it. | |
| """ | |
| for p in module.parameters(): | |
| p.detach().mul_(scale) | |
| return module | |
| def mean_flat(tensor): | |
| """ | |
| Take the mean over all non-batch dimensions. | |
| """ | |
| return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
| def normalization(channels): | |
| """ | |
| Make a standard normalization layer. | |
| :param channels: number of input channels. | |
| :return: an nn.Module for normalization. | |
| """ | |
| return GroupNorm32(32, channels) | |
| def timestep_embedding(timesteps, dim, max_period=10000): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| :param timesteps: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| :param dim: the dimension of the output. | |
| :param max_period: controls the minimum frequency of the embeddings. | |
| :return: an [N x dim] Tensor of positional embeddings. | |
| """ | |
| half = dim // 2 | |
| freqs = th.exp( | |
| -math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half | |
| ).to(device=timesteps.device) | |
| args = timesteps[:, None].float() * freqs[None] # B x half | |
| embedding = th.cat([th.cos(args), th.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1) | |
| return embedding | |