add img2imgSegmindVegaRT
Browse files
pipelines/img2imgSegmindVegaRT.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers import (
|
| 2 |
+
AutoPipelineForImage2Image,
|
| 3 |
+
LCMScheduler,
|
| 4 |
+
AutoencoderTiny,
|
| 5 |
+
)
|
| 6 |
+
from compel import Compel, ReturnedEmbeddingsType
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
try:
|
| 10 |
+
import intel_extension_for_pytorch as ipex # type: ignore
|
| 11 |
+
except:
|
| 12 |
+
pass
|
| 13 |
+
|
| 14 |
+
import psutil
|
| 15 |
+
from config import Args
|
| 16 |
+
from pydantic import BaseModel, Field
|
| 17 |
+
from PIL import Image
|
| 18 |
+
import math
|
| 19 |
+
|
| 20 |
+
base_model = "segmind/Segmind-Vega"
|
| 21 |
+
lora_model = "segmind/Segmind-VegaRT"
|
| 22 |
+
taesd_model = "madebyollin/taesdxl"
|
| 23 |
+
|
| 24 |
+
default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
|
| 25 |
+
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
|
| 26 |
+
page_content = """
|
| 27 |
+
<h1 class="text-3xl font-bold">Real-Time SDXL Turbo</h1>
|
| 28 |
+
<h3 class="text-xl font-bold">Image-to-Image</h3>
|
| 29 |
+
<p class="text-sm">
|
| 30 |
+
This demo showcases
|
| 31 |
+
<a
|
| 32 |
+
href="https://huggingface.co/stabilityai/sdxl-turbo"
|
| 33 |
+
target="_blank"
|
| 34 |
+
class="text-blue-500 underline hover:no-underline">SDXL Turbo</a>
|
| 35 |
+
Image to Image pipeline using
|
| 36 |
+
<a
|
| 37 |
+
href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/sdxl_turbo"
|
| 38 |
+
target="_blank"
|
| 39 |
+
class="text-blue-500 underline hover:no-underline">Diffusers</a
|
| 40 |
+
> with a MJPEG stream server.
|
| 41 |
+
</p>
|
| 42 |
+
<p class="text-sm text-gray-500">
|
| 43 |
+
Change the prompt to generate different images, accepts <a
|
| 44 |
+
href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
|
| 45 |
+
target="_blank"
|
| 46 |
+
class="text-blue-500 underline hover:no-underline">Compel</a
|
| 47 |
+
> syntax.
|
| 48 |
+
</p>
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class Pipeline:
|
| 53 |
+
class Info(BaseModel):
|
| 54 |
+
name: str = "img2img"
|
| 55 |
+
title: str = "Image-to-Image Playground 256"
|
| 56 |
+
description: str = "Generates an image from a text prompt"
|
| 57 |
+
input_mode: str = "image"
|
| 58 |
+
page_content: str = page_content
|
| 59 |
+
|
| 60 |
+
class InputParams(BaseModel):
|
| 61 |
+
prompt: str = Field(
|
| 62 |
+
default_prompt,
|
| 63 |
+
title="Prompt",
|
| 64 |
+
field="textarea",
|
| 65 |
+
id="prompt",
|
| 66 |
+
)
|
| 67 |
+
negative_prompt: str = Field(
|
| 68 |
+
default_negative_prompt,
|
| 69 |
+
title="Negative Prompt",
|
| 70 |
+
field="textarea",
|
| 71 |
+
id="negative_prompt",
|
| 72 |
+
hide=True,
|
| 73 |
+
)
|
| 74 |
+
seed: int = Field(
|
| 75 |
+
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
| 76 |
+
)
|
| 77 |
+
steps: int = Field(
|
| 78 |
+
4, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
| 79 |
+
)
|
| 80 |
+
width: int = Field(
|
| 81 |
+
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
| 82 |
+
)
|
| 83 |
+
height: int = Field(
|
| 84 |
+
1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
| 85 |
+
)
|
| 86 |
+
guidance_scale: float = Field(
|
| 87 |
+
0.2,
|
| 88 |
+
min=0,
|
| 89 |
+
max=20,
|
| 90 |
+
step=0.001,
|
| 91 |
+
title="Guidance Scale",
|
| 92 |
+
field="range",
|
| 93 |
+
hide=True,
|
| 94 |
+
id="guidance_scale",
|
| 95 |
+
)
|
| 96 |
+
strength: float = Field(
|
| 97 |
+
0.5,
|
| 98 |
+
min=0.25,
|
| 99 |
+
max=1.0,
|
| 100 |
+
step=0.001,
|
| 101 |
+
title="Strength",
|
| 102 |
+
field="range",
|
| 103 |
+
hide=True,
|
| 104 |
+
id="strength",
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
| 108 |
+
if args.safety_checker:
|
| 109 |
+
self.pipe = AutoPipelineForImage2Image.from_pretrained(
|
| 110 |
+
base_model,
|
| 111 |
+
variant="fp16",
|
| 112 |
+
)
|
| 113 |
+
else:
|
| 114 |
+
self.pipe = AutoPipelineForImage2Image.from_pretrained(
|
| 115 |
+
base_model,
|
| 116 |
+
safety_checker=None,
|
| 117 |
+
variant="fp16",
|
| 118 |
+
)
|
| 119 |
+
if args.use_taesd:
|
| 120 |
+
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 121 |
+
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 122 |
+
).to(device)
|
| 123 |
+
|
| 124 |
+
self.pipe.load_lora_weights(lora_model)
|
| 125 |
+
self.pipe.fuse_lora()
|
| 126 |
+
self.pipe.scheduler = LCMScheduler.from_pretrained(
|
| 127 |
+
base_model, subfolder="scheduler"
|
| 128 |
+
)
|
| 129 |
+
self.pipe.set_progress_bar_config(disable=True)
|
| 130 |
+
self.pipe.to(device=device, dtype=torch_dtype)
|
| 131 |
+
if device.type != "mps":
|
| 132 |
+
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 133 |
+
|
| 134 |
+
# check if computer has less than 64GB of RAM using sys or os
|
| 135 |
+
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 136 |
+
self.pipe.enable_attention_slicing()
|
| 137 |
+
|
| 138 |
+
if args.torch_compile:
|
| 139 |
+
print("Running torch compile")
|
| 140 |
+
self.pipe.unet = torch.compile(
|
| 141 |
+
self.pipe.unet,
|
| 142 |
+
)
|
| 143 |
+
self.pipe.vae = torch.compile(
|
| 144 |
+
self.pipe.vae,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
self.pipe(
|
| 148 |
+
prompt="warmup",
|
| 149 |
+
image=[Image.new("RGB", (768, 768))],
|
| 150 |
+
)
|
| 151 |
+
if args.compel:
|
| 152 |
+
self.pipe.compel_proc = Compel(
|
| 153 |
+
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
| 154 |
+
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
| 155 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 156 |
+
requires_pooled=[False, True],
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 160 |
+
generator = torch.manual_seed(params.seed)
|
| 161 |
+
prompt = params.prompt
|
| 162 |
+
negative_prompt = params.negative_prompt
|
| 163 |
+
prompt_embeds = None
|
| 164 |
+
pooled_prompt_embeds = None
|
| 165 |
+
negative_prompt_embeds = None
|
| 166 |
+
negative_pooled_prompt_embeds = None
|
| 167 |
+
if hasattr(self.pipe, "compel_proc"):
|
| 168 |
+
prompt_embeds = self.pipe.compel_proc(
|
| 169 |
+
[params.prompt, params.negative_prompt]
|
| 170 |
+
)
|
| 171 |
+
prompt = None
|
| 172 |
+
negative_prompt = None
|
| 173 |
+
prompt_embeds = prompt_embeds[0:1]
|
| 174 |
+
pooled_prompt_embeds = pooled_prompt_embeds[0:1]
|
| 175 |
+
negative_prompt_embeds = prompt_embeds[1:2]
|
| 176 |
+
negative_pooled_prompt_embeds = pooled_prompt_embeds[1:2]
|
| 177 |
+
|
| 178 |
+
steps = params.steps
|
| 179 |
+
strength = params.strength
|
| 180 |
+
if int(steps * strength) < 1:
|
| 181 |
+
steps = math.ceil(1 / max(0.10, strength))
|
| 182 |
+
|
| 183 |
+
results = self.pipe(
|
| 184 |
+
image=params.image,
|
| 185 |
+
prompt=prompt,
|
| 186 |
+
negative_prompt=negative_prompt,
|
| 187 |
+
prompt_embeds=prompt_embeds,
|
| 188 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 189 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 190 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 191 |
+
generator=generator,
|
| 192 |
+
strength=strength,
|
| 193 |
+
num_inference_steps=steps,
|
| 194 |
+
guidance_scale=params.guidance_scale,
|
| 195 |
+
width=params.width,
|
| 196 |
+
height=params.height,
|
| 197 |
+
output_type="pil",
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
nsfw_content_detected = (
|
| 201 |
+
results.nsfw_content_detected[0]
|
| 202 |
+
if "nsfw_content_detected" in results
|
| 203 |
+
else False
|
| 204 |
+
)
|
| 205 |
+
if nsfw_content_detected:
|
| 206 |
+
return None
|
| 207 |
+
result_image = results.images[0]
|
| 208 |
+
|
| 209 |
+
return result_image
|