model examples
Browse files- app-controlnetlora.py +33 -41
- app-txt2imglora.py +3 -7
- requirements.txt +3 -3
- static/controlnetlora.html +49 -15
- static/txt2imglora.html +5 -1
app-controlnetlora.py
CHANGED
|
@@ -23,9 +23,6 @@ import torch
|
|
| 23 |
|
| 24 |
from canny_gpu import SobelOperator
|
| 25 |
|
| 26 |
-
# from controlnet_aux import OpenposeDetector
|
| 27 |
-
# import cv2
|
| 28 |
-
|
| 29 |
try:
|
| 30 |
import intel_extension_for_pytorch as ipex
|
| 31 |
except:
|
|
@@ -44,12 +41,10 @@ MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
|
| 44 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
| 45 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
| 46 |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
| 47 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 48 |
|
| 49 |
WIDTH = 512
|
| 50 |
HEIGHT = 512
|
| 51 |
|
| 52 |
-
|
| 53 |
# check if MPS is available OSX only M1/M2/M3 chips
|
| 54 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
| 55 |
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
|
@@ -76,37 +71,40 @@ controlnet_canny = ControlNetModel.from_pretrained(
|
|
| 76 |
|
| 77 |
canny_torch = SobelOperator(device=device)
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
if SAFETY_CHECKER == "True":
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
| 87 |
else:
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
pipe
|
| 96 |
-
pipe
|
| 97 |
-
pipe.
|
| 98 |
-
|
|
|
|
| 99 |
|
| 100 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 101 |
-
|
| 102 |
|
| 103 |
-
# Load LCM LoRA
|
| 104 |
-
pipe.load_lora_weights(
|
| 105 |
-
lcm_lora_id,
|
| 106 |
-
weight_name="lcm_sd_lora.safetensors",
|
| 107 |
-
adapter_name="lcm",
|
| 108 |
-
use_auth_token=HF_TOKEN,
|
| 109 |
-
)
|
| 110 |
|
| 111 |
compel_proc = Compel(
|
| 112 |
tokenizer=pipe.tokenizer,
|
|
@@ -142,16 +140,17 @@ class InputParams(BaseModel):
|
|
| 142 |
canny_low_threshold: float = 0.31
|
| 143 |
canny_high_threshold: float = 0.78
|
| 144 |
debug_canny: bool = False
|
|
|
|
| 145 |
|
| 146 |
|
| 147 |
-
def predict(
|
| 148 |
-
input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None
|
| 149 |
-
):
|
| 150 |
generator = torch.manual_seed(params.seed)
|
| 151 |
|
| 152 |
control_image = canny_torch(
|
| 153 |
input_image, params.canny_low_threshold, params.canny_high_threshold
|
| 154 |
)
|
|
|
|
|
|
|
| 155 |
results = pipe(
|
| 156 |
control_image=control_image,
|
| 157 |
prompt_embeds=prompt_embeds,
|
|
@@ -245,23 +244,16 @@ async def stream(user_id: uuid.UUID):
|
|
| 245 |
|
| 246 |
async def generate():
|
| 247 |
last_prompt: str = None
|
| 248 |
-
prompt_embeds: torch.Tensor = None
|
| 249 |
while True:
|
| 250 |
data = await queue.get()
|
| 251 |
input_image = data["image"]
|
| 252 |
params = data["params"]
|
| 253 |
if input_image is None:
|
| 254 |
continue
|
| 255 |
-
# avoid recalculate prompt embeds
|
| 256 |
-
if last_prompt != params.prompt:
|
| 257 |
-
print("new prompt")
|
| 258 |
-
prompt_embeds = compel_proc(params.prompt)
|
| 259 |
-
last_prompt = params.prompt
|
| 260 |
|
| 261 |
image = predict(
|
| 262 |
input_image,
|
| 263 |
params,
|
| 264 |
-
prompt_embeds,
|
| 265 |
)
|
| 266 |
if image is None:
|
| 267 |
continue
|
|
|
|
| 23 |
|
| 24 |
from canny_gpu import SobelOperator
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
try:
|
| 27 |
import intel_extension_for_pytorch as ipex
|
| 28 |
except:
|
|
|
|
| 41 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
| 42 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
| 43 |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
|
|
|
| 44 |
|
| 45 |
WIDTH = 512
|
| 46 |
HEIGHT = 512
|
| 47 |
|
|
|
|
| 48 |
# check if MPS is available OSX only M1/M2/M3 chips
|
| 49 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
| 50 |
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
|
|
|
| 71 |
|
| 72 |
canny_torch = SobelOperator(device=device)
|
| 73 |
|
| 74 |
+
models_id = [
|
| 75 |
+
"wavymulder/Analog-Diffusion",
|
| 76 |
+
"nitrosocke/Ghibli-Diffusion",
|
| 77 |
+
"nitrosocke/mo-di-diffusion",
|
| 78 |
+
]
|
| 79 |
+
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
|
| 80 |
|
| 81 |
if SAFETY_CHECKER == "True":
|
| 82 |
+
pipes = {}
|
| 83 |
+
for model_id in models_id:
|
| 84 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
| 85 |
+
model_id,
|
| 86 |
+
controlnet=controlnet_canny,
|
| 87 |
+
)
|
| 88 |
+
pipes[model_id] = pipe
|
| 89 |
else:
|
| 90 |
+
pipes = {}
|
| 91 |
+
for model_id in models_id:
|
| 92 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
| 93 |
+
model_id,
|
| 94 |
+
safety_checker=None,
|
| 95 |
+
controlnet=controlnet_canny,
|
| 96 |
+
)
|
| 97 |
+
pipes[model_id] = pipe
|
| 98 |
+
for pipe in pipes.values():
|
| 99 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 100 |
+
pipe.set_progress_bar_config(disable=True)
|
| 101 |
+
pipe.to(device=device, dtype=torch_dtype).to(device)
|
| 102 |
|
| 103 |
+
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 104 |
+
pipe.enable_attention_slicing()
|
| 105 |
|
| 106 |
+
# Load LCM LoRA
|
| 107 |
+
pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
compel_proc = Compel(
|
| 110 |
tokenizer=pipe.tokenizer,
|
|
|
|
| 140 |
canny_low_threshold: float = 0.31
|
| 141 |
canny_high_threshold: float = 0.78
|
| 142 |
debug_canny: bool = False
|
| 143 |
+
model_id: str = "nitrosocke/Ghibli-Diffusion"
|
| 144 |
|
| 145 |
|
| 146 |
+
def predict(input_image: Image.Image, params: InputParams):
|
|
|
|
|
|
|
| 147 |
generator = torch.manual_seed(params.seed)
|
| 148 |
|
| 149 |
control_image = canny_torch(
|
| 150 |
input_image, params.canny_low_threshold, params.canny_high_threshold
|
| 151 |
)
|
| 152 |
+
prompt_embeds = compel_proc(params.prompt)
|
| 153 |
+
pipe = pipes[params.model_id]
|
| 154 |
results = pipe(
|
| 155 |
control_image=control_image,
|
| 156 |
prompt_embeds=prompt_embeds,
|
|
|
|
| 244 |
|
| 245 |
async def generate():
|
| 246 |
last_prompt: str = None
|
|
|
|
| 247 |
while True:
|
| 248 |
data = await queue.get()
|
| 249 |
input_image = data["image"]
|
| 250 |
params = data["params"]
|
| 251 |
if input_image is None:
|
| 252 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
|
| 254 |
image = predict(
|
| 255 |
input_image,
|
| 256 |
params,
|
|
|
|
| 257 |
)
|
| 258 |
if image is None:
|
| 259 |
continue
|
app-txt2imglora.py
CHANGED
|
@@ -35,7 +35,6 @@ MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
|
| 35 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
| 36 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
| 37 |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
| 38 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 39 |
|
| 40 |
WIDTH = 512
|
| 41 |
HEIGHT = 512
|
|
@@ -61,7 +60,7 @@ if mps_available:
|
|
| 61 |
torch_dtype = torch.float32
|
| 62 |
|
| 63 |
model_id = "wavymulder/Analog-Diffusion"
|
| 64 |
-
lcm_lora_id = "
|
| 65 |
|
| 66 |
if SAFETY_CHECKER == "True":
|
| 67 |
pipe = DiffusionPipeline.from_pretrained(model_id)
|
|
@@ -83,13 +82,11 @@ if TORCH_COMPILE:
|
|
| 83 |
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
| 84 |
|
| 85 |
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
| 86 |
-
|
| 87 |
# Load LCM LoRA
|
| 88 |
pipe.load_lora_weights(
|
| 89 |
lcm_lora_id,
|
| 90 |
-
|
| 91 |
-
adapter_name="lcm",
|
| 92 |
-
use_auth_token=HF_TOKEN,
|
| 93 |
)
|
| 94 |
|
| 95 |
compel_proc = Compel(
|
|
@@ -121,7 +118,6 @@ def predict(params: InputParams):
|
|
| 121 |
guidance_scale=params.guidance_scale,
|
| 122 |
width=params.width,
|
| 123 |
height=params.height,
|
| 124 |
-
# original_inference_steps=params.lcm_steps,
|
| 125 |
output_type="pil",
|
| 126 |
)
|
| 127 |
nsfw_content_detected = (
|
|
|
|
| 35 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
| 36 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
| 37 |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
|
|
|
| 38 |
|
| 39 |
WIDTH = 512
|
| 40 |
HEIGHT = 512
|
|
|
|
| 60 |
torch_dtype = torch.float32
|
| 61 |
|
| 62 |
model_id = "wavymulder/Analog-Diffusion"
|
| 63 |
+
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
|
| 64 |
|
| 65 |
if SAFETY_CHECKER == "True":
|
| 66 |
pipe = DiffusionPipeline.from_pretrained(model_id)
|
|
|
|
| 82 |
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
| 83 |
|
| 84 |
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
| 85 |
+
|
| 86 |
# Load LCM LoRA
|
| 87 |
pipe.load_lora_weights(
|
| 88 |
lcm_lora_id,
|
| 89 |
+
adapter_name="lcm"
|
|
|
|
|
|
|
| 90 |
)
|
| 91 |
|
| 92 |
compel_proc = Compel(
|
|
|
|
| 118 |
guidance_scale=params.guidance_scale,
|
| 119 |
width=params.width,
|
| 120 |
height=params.height,
|
|
|
|
| 121 |
output_type="pil",
|
| 122 |
)
|
| 123 |
nsfw_content_detected = (
|
requirements.txt
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
-
|
| 2 |
-
git+https://github.com/huggingface/diffusers.git@6110d7c95f630479cf01340cc8a8141c1e359f09
|
| 3 |
transformers==4.34.1
|
| 4 |
gradio==3.50.2
|
| 5 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
|
@@ -10,4 +9,5 @@ Pillow==10.1.0
|
|
| 10 |
accelerate==0.24.0
|
| 11 |
compel==2.0.2
|
| 12 |
controlnet-aux==0.0.7
|
| 13 |
-
peft==0.6.0
|
|
|
|
|
|
| 1 |
+
diffusers==0.23.0
|
|
|
|
| 2 |
transformers==4.34.1
|
| 3 |
gradio==3.50.2
|
| 4 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
|
|
|
| 9 |
accelerate==0.24.0
|
| 10 |
compel==2.0.2
|
| 11 |
controlnet-aux==0.0.7
|
| 12 |
+
peft==0.6.0
|
| 13 |
+
xformers
|
static/controlnetlora.html
CHANGED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
|
| 4 |
<head>
|
| 5 |
<meta charset="UTF-8">
|
| 6 |
-
<title>Real-Time Latent Consistency Model ControlNet</title>
|
| 7 |
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 8 |
<script
|
| 9 |
src="https://cdnjs.cloudflare.com/ajax/libs/iframe-resizer/4.3.1/iframeResizer.contentWindow.min.js"></script>
|
|
@@ -93,8 +93,9 @@
|
|
| 93 |
}
|
| 94 |
|
| 95 |
async function videoTimeUpdateHandler() {
|
| 96 |
-
const
|
| 97 |
-
|
|
|
|
| 98 |
|
| 99 |
const canvas = new OffscreenCanvas(WIDTH, HEIGHT);
|
| 100 |
const videoW = webcamVideo.videoWidth;
|
|
@@ -118,7 +119,8 @@
|
|
| 118 |
"controlnet_end": getValue("#controlnet_end"),
|
| 119 |
"canny_low_threshold": getValue("#canny_low_threshold"),
|
| 120 |
"canny_high_threshold": getValue("#canny_high_threshold"),
|
| 121 |
-
"debug_canny": getValue("#debug_canny")
|
|
|
|
| 122 |
}));
|
| 123 |
}
|
| 124 |
let mediaDevices = [];
|
|
@@ -220,8 +222,33 @@
|
|
| 220 |
console.log(err);
|
| 221 |
}
|
| 222 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
|
|
|
| 225 |
const lcmLive = LCMLive(videoEl, imageEl);
|
| 226 |
startBtn.addEventListener("click", async () => {
|
| 227 |
try {
|
|
@@ -263,16 +290,18 @@
|
|
| 263 |
<main class="container mx-auto px-4 py-4 max-w-4xl flex flex-col gap-4">
|
| 264 |
<article class="text-center max-w-xl mx-auto">
|
| 265 |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
| 266 |
-
<h2 class="text-2xl font-bold mb-4">ControlNet
|
| 267 |
<p class="text-sm">
|
| 268 |
This demo showcases
|
| 269 |
-
<a href="https://huggingface.co/
|
| 270 |
-
class="text-blue-500 underline hover:no-underline">LCM</a>
|
| 271 |
-
using
|
| 272 |
-
|
| 273 |
target="_blank" class="text-blue-500 underline hover:no-underline">Diffusers</a> with a MJPEG
|
| 274 |
-
stream server.
|
| 275 |
-
|
|
|
|
|
|
|
| 276 |
</p>
|
| 277 |
</article>
|
| 278 |
<div>
|
|
@@ -285,9 +314,14 @@
|
|
| 285 |
<div class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center">
|
| 286 |
<textarea type="text" id="prompt" class="font-light w-full px-3 py-2 mx-1 outline-none dark:text-black"
|
| 287 |
title="Prompt, this is an example, feel free to modify"
|
| 288 |
-
placeholder="Add your prompt here...">
|
| 289 |
</div>
|
| 290 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
<div class="">
|
| 292 |
<details>
|
| 293 |
<summary class="font-medium cursor-pointer">Advanced Options</summary>
|
|
@@ -310,7 +344,7 @@
|
|
| 310 |
0.3</output>
|
| 311 |
<!-- -->
|
| 312 |
<label class="text-sm font-medium" for="strength">Strength</label>
|
| 313 |
-
<input type="range" id="strength" name="strength" min="0.1" max="1" step="0.
|
| 314 |
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
| 315 |
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
| 316 |
0.5</output>
|
|
@@ -357,7 +391,7 @@
|
|
| 357 |
</button>
|
| 358 |
<!-- -->
|
| 359 |
<!-- -->
|
| 360 |
-
<label class="text-sm font-medium" for="dimension">Image Dimensions</label>
|
| 361 |
<div class="col-span-2 flex gap-2">
|
| 362 |
<div class="flex gap-1">
|
| 363 |
<input type="radio" id="dimension512" name="dimension" value="[512,512]" checked
|
|
@@ -369,7 +403,7 @@
|
|
| 369 |
lass="cursor-pointer">
|
| 370 |
<label for="dimension768" class="text-sm cursor-pointer">768x768</label>
|
| 371 |
</div>
|
| 372 |
-
</div>
|
| 373 |
<!-- -->
|
| 374 |
<!-- -->
|
| 375 |
<label class="text-sm font-medium" for="debug_canny">Debug Canny</label>
|
|
|
|
| 3 |
|
| 4 |
<head>
|
| 5 |
<meta charset="UTF-8">
|
| 6 |
+
<title>Real-Time Latent Consistency Model ControlNet Lora</title>
|
| 7 |
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 8 |
<script
|
| 9 |
src="https://cdnjs.cloudflare.com/ajax/libs/iframe-resizer/4.3.1/iframeResizer.contentWindow.min.js"></script>
|
|
|
|
| 93 |
}
|
| 94 |
|
| 95 |
async function videoTimeUpdateHandler() {
|
| 96 |
+
const model_id = getValue("input[name=base_model]:checked");
|
| 97 |
+
|
| 98 |
+
const [WIDTH, HEIGHT] = [512, 512];
|
| 99 |
|
| 100 |
const canvas = new OffscreenCanvas(WIDTH, HEIGHT);
|
| 101 |
const videoW = webcamVideo.videoWidth;
|
|
|
|
| 119 |
"controlnet_end": getValue("#controlnet_end"),
|
| 120 |
"canny_low_threshold": getValue("#canny_low_threshold"),
|
| 121 |
"canny_high_threshold": getValue("#canny_high_threshold"),
|
| 122 |
+
"debug_canny": getValue("#debug_canny"),
|
| 123 |
+
"model_id": model_id
|
| 124 |
}));
|
| 125 |
}
|
| 126 |
let mediaDevices = [];
|
|
|
|
| 222 |
console.log(err);
|
| 223 |
}
|
| 224 |
}
|
| 225 |
+
const models_id = {
|
| 226 |
+
"nitrosocke/Ghibli-Diffusion": "ghibli style",
|
| 227 |
+
"nitrosocke/mo-di-diffusion": "modern disney style",
|
| 228 |
+
"wavymulder/Analog-Diffusion": "analog style"
|
| 229 |
+
}
|
| 230 |
|
| 231 |
+
document.addEventListener("DOMContentLoaded", () => {
|
| 232 |
+
const models_options = document.querySelector("#models_options");
|
| 233 |
+
Object.entries(models_id).forEach(([model, activation], i) => {
|
| 234 |
+
const modelEl = document.createElement("div");
|
| 235 |
+
modelEl.innerHTML = `
|
| 236 |
+
<input type="radio" id="${model}" name="base_model" value="${model}" class="cursor-pointer" ${i === 0 ? "checked" : ""}>
|
| 237 |
+
<label for="${model}" class="text-sm cursor-pointer" title="Use the keyword on your prompt: ${activation}">${model}: <b>${activation}</b>
|
| 238 |
+
<a href="https://hf.co/${model}" title="Model link on Hugging Face" target="_blank" class="text-sm text-blue-500 underline hover:no-underline">⤴️</a></label>
|
| 239 |
+
`;
|
| 240 |
+
models_options.appendChild(modelEl);
|
| 241 |
+
})
|
| 242 |
+
models_options.addEventListener("change", () => {
|
| 243 |
+
const model = getValue("input[name=base_model]:checked");
|
| 244 |
+
const prompt = getValue("#prompt");
|
| 245 |
+
const activation = models_id[model];
|
| 246 |
+
if (prompt.includes(activation))
|
| 247 |
+
return;
|
| 248 |
+
document.querySelector("#prompt").value = `${activation} portrait of a person`;
|
| 249 |
+
})
|
| 250 |
|
| 251 |
+
})
|
| 252 |
const lcmLive = LCMLive(videoEl, imageEl);
|
| 253 |
startBtn.addEventListener("click", async () => {
|
| 254 |
try {
|
|
|
|
| 290 |
<main class="container mx-auto px-4 py-4 max-w-4xl flex flex-col gap-4">
|
| 291 |
<article class="text-center max-w-xl mx-auto">
|
| 292 |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
| 293 |
+
<h2 class="text-2xl font-bold mb-4">ControlNet LoRa</h2>
|
| 294 |
<p class="text-sm">
|
| 295 |
This demo showcases
|
| 296 |
+
<a href="https://huggingface.co/blog/lcm_lora" target="_blank"
|
| 297 |
+
class="text-blue-500 underline hover:no-underline">LCM LoRa</a> ControlNet pipeline
|
| 298 |
+
using <a
|
| 299 |
+
href="https://huggingface.co/docs/diffusers/api/pipelines/latent_consistency_models#latent-consistency-models"
|
| 300 |
target="_blank" class="text-blue-500 underline hover:no-underline">Diffusers</a> with a MJPEG
|
| 301 |
+
stream server.
|
| 302 |
+
</p>
|
| 303 |
+
<p class="text-sm">
|
| 304 |
+
There are <span id="queue_size" class="font-bold">0</span> user(s) sharing the same GPU.
|
| 305 |
</p>
|
| 306 |
</article>
|
| 307 |
<div>
|
|
|
|
| 314 |
<div class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center">
|
| 315 |
<textarea type="text" id="prompt" class="font-light w-full px-3 py-2 mx-1 outline-none dark:text-black"
|
| 316 |
title="Prompt, this is an example, feel free to modify"
|
| 317 |
+
placeholder="Add your prompt here...">ghibli style portrait of a person</textarea>
|
| 318 |
</div>
|
| 319 |
</div>
|
| 320 |
+
<!-- -->
|
| 321 |
+
<label class="font-medium" for="base_model">Base Model</label>
|
| 322 |
+
<fieldset class="flex flex-col gap-2" id="models_options">
|
| 323 |
+
</fieldset>
|
| 324 |
+
<!-- -->
|
| 325 |
<div class="">
|
| 326 |
<details>
|
| 327 |
<summary class="font-medium cursor-pointer">Advanced Options</summary>
|
|
|
|
| 344 |
0.3</output>
|
| 345 |
<!-- -->
|
| 346 |
<label class="text-sm font-medium" for="strength">Strength</label>
|
| 347 |
+
<input type="range" id="strength" name="strength" min="0.1" max="1" step="0.0001" value="0.50"
|
| 348 |
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
| 349 |
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
| 350 |
0.5</output>
|
|
|
|
| 391 |
</button>
|
| 392 |
<!-- -->
|
| 393 |
<!-- -->
|
| 394 |
+
<!-- <label class="text-sm font-medium" for="dimension">Image Dimensions</label>
|
| 395 |
<div class="col-span-2 flex gap-2">
|
| 396 |
<div class="flex gap-1">
|
| 397 |
<input type="radio" id="dimension512" name="dimension" value="[512,512]" checked
|
|
|
|
| 403 |
lass="cursor-pointer">
|
| 404 |
<label for="dimension768" class="text-sm cursor-pointer">768x768</label>
|
| 405 |
</div>
|
| 406 |
+
</div> -->
|
| 407 |
<!-- -->
|
| 408 |
<!-- -->
|
| 409 |
<label class="text-sm font-medium" for="debug_canny">Debug Canny</label>
|
static/txt2imglora.html
CHANGED
|
@@ -212,6 +212,10 @@
|
|
| 212 |
stream server. Featuring <a href="https://huggingface.co/wavymulder/Analog-Diffusion" target="_blank"
|
| 213 |
class="text-blue-500 underline hover:no-underline">Analog Diffusion</a> Model.
|
| 214 |
</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
</article>
|
| 216 |
<div>
|
| 217 |
<h2 class="font-medium">Prompt</h2>
|
|
@@ -250,7 +254,7 @@
|
|
| 250 |
<input type="range" id="guidance-scale" name="guidance-scale" min="0" max="5" step="0.0001"
|
| 251 |
value="0.8" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
| 252 |
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
| 253 |
-
8
|
| 254 |
<!-- -->
|
| 255 |
<label class="text-sm font-medium" for="seed">Seed</label>
|
| 256 |
<input type="number" id="seed" name="seed" value="299792458"
|
|
|
|
| 212 |
stream server. Featuring <a href="https://huggingface.co/wavymulder/Analog-Diffusion" target="_blank"
|
| 213 |
class="text-blue-500 underline hover:no-underline">Analog Diffusion</a> Model.
|
| 214 |
</p>
|
| 215 |
+
<p class="text-sm">
|
| 216 |
+
There are <span id="queue_size" class="font-bold">0</span> user(s) sharing the same GPU, affecting
|
| 217 |
+
real-time performance.
|
| 218 |
+
</p>
|
| 219 |
</article>
|
| 220 |
<div>
|
| 221 |
<h2 class="font-medium">Prompt</h2>
|
|
|
|
| 254 |
<input type="range" id="guidance-scale" name="guidance-scale" min="0" max="5" step="0.0001"
|
| 255 |
value="0.8" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
| 256 |
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
| 257 |
+
0.8</output>
|
| 258 |
<!-- -->
|
| 259 |
<label class="text-sm font-medium" for="seed">Seed</label>
|
| 260 |
<input type="number" id="seed" name="seed" value="299792458"
|