Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import contextlib | |
| import datetime | |
| import io | |
| import json | |
| import logging | |
| import os | |
| import shutil | |
| import numpy as np | |
| import pycocotools.mask as mask_util | |
| from detectron2.structures import Boxes, BoxMode, PolygonMasks, RotatedBoxes | |
| from detectron2.utils.file_io import PathManager | |
| from fvcore.common.timer import Timer | |
| from iopath.common.file_io import file_lock | |
| from PIL import Image | |
| from .. import DatasetCatalog, MetadataCatalog | |
| """ | |
| This file contains functions to parse COCO-format annotations into dicts in "Detectron2 format". | |
| """ | |
| logger = logging.getLogger(__name__) | |
| __all__ = [ | |
| "load_coco_json", | |
| "load_sem_seg", | |
| "convert_to_coco_json", | |
| "register_coco_instances", | |
| ] | |
| def load_coco_json( | |
| json_file, image_root, dataset_name=None, extra_annotation_keys=None | |
| ): | |
| """ | |
| Load a json file with COCO's instances annotation format. | |
| Currently supports instance detection, instance segmentation, | |
| and person keypoints annotations. | |
| Args: | |
| json_file (str): full path to the json file in COCO instances annotation format. | |
| image_root (str or path-like): the directory where the images in this json file exists. | |
| dataset_name (str or None): the name of the dataset (e.g., coco_2017_train). | |
| When provided, this function will also do the following: | |
| * Put "thing_classes" into the metadata associated with this dataset. | |
| * Map the category ids into a contiguous range (needed by standard dataset format), | |
| and add "thing_dataset_id_to_contiguous_id" to the metadata associated | |
| with this dataset. | |
| This option should usually be provided, unless users need to load | |
| the original json content and apply more processing manually. | |
| extra_annotation_keys (list[str]): list of per-annotation keys that should also be | |
| loaded into the dataset dict (besides "iscrowd", "bbox", "keypoints", | |
| "category_id", "segmentation"). The values for these keys will be returned as-is. | |
| For example, the densepose annotations are loaded in this way. | |
| Returns: | |
| list[dict]: a list of dicts in Detectron2 standard dataset dicts format (See | |
| `Using Custom Datasets </tutorials/datasets.html>`_ ) when `dataset_name` is not None. | |
| If `dataset_name` is None, the returned `category_ids` may be | |
| incontiguous and may not conform to the Detectron2 standard format. | |
| Notes: | |
| 1. This function does not read the image files. | |
| The results do not have the "image" field. | |
| """ | |
| from pycocotools.coco import COCO | |
| timer = Timer() | |
| json_file = PathManager.get_local_path(json_file) | |
| with contextlib.redirect_stdout(io.StringIO()): | |
| coco_api = COCO(json_file) | |
| if timer.seconds() > 1: | |
| logger.info( | |
| "Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()) | |
| ) | |
| id_map = None | |
| if dataset_name is not None: | |
| meta = MetadataCatalog.get(dataset_name) | |
| cat_ids = sorted(coco_api.getCatIds()) | |
| cats = coco_api.loadCats(cat_ids) | |
| # The categories in a custom json file may not be sorted. | |
| thing_classes = [c["name"] for c in sorted(cats, key=lambda x: x["id"])] | |
| meta.thing_classes = thing_classes | |
| # In COCO, certain category ids are artificially removed, | |
| # and by convention they are always ignored. | |
| # We deal with COCO's id issue and translate | |
| # the category ids to contiguous ids in [0, 80). | |
| # It works by looking at the "categories" field in the json, therefore | |
| # if users' own json also have incontiguous ids, we'll | |
| # apply this mapping as well but print a warning. | |
| if not (min(cat_ids) == 1 and max(cat_ids) == len(cat_ids)): | |
| if "coco" not in dataset_name: | |
| logger.warning( | |
| """ | |
| Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you. | |
| """ | |
| ) | |
| id_map = {v: i for i, v in enumerate(cat_ids)} | |
| meta.thing_dataset_id_to_contiguous_id = id_map | |
| # sort indices for reproducible results | |
| img_ids = sorted(coco_api.imgs.keys()) | |
| # imgs is a list of dicts, each looks something like: | |
| # {'license': 4, | |
| # 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg', | |
| # 'file_name': 'COCO_val2014_000000001268.jpg', | |
| # 'height': 427, | |
| # 'width': 640, | |
| # 'date_captured': '2013-11-17 05:57:24', | |
| # 'id': 1268} | |
| imgs = coco_api.loadImgs(img_ids) | |
| # anns is a list[list[dict]], where each dict is an annotation | |
| # record for an object. The inner list enumerates the objects in an image | |
| # and the outer list enumerates over images. Example of anns[0]: | |
| # [{'segmentation': [[192.81, | |
| # 247.09, | |
| # ... | |
| # 219.03, | |
| # 249.06]], | |
| # 'area': 1035.749, | |
| # 'iscrowd': 0, | |
| # 'image_id': 1268, | |
| # 'bbox': [192.81, 224.8, 74.73, 33.43], | |
| # 'category_id': 16, | |
| # 'id': 42986}, | |
| # ...] | |
| anns = [coco_api.imgToAnns[img_id] for img_id in img_ids] | |
| total_num_valid_anns = sum([len(x) for x in anns]) | |
| total_num_anns = len(coco_api.anns) | |
| if total_num_valid_anns < total_num_anns: | |
| logger.warning( | |
| f"{json_file} contains {total_num_anns} annotations, but only " | |
| f"{total_num_valid_anns} of them match to images in the file." | |
| ) | |
| if "minival" not in json_file: | |
| # The popular valminusminival & minival annotations for COCO2014 contain this bug. | |
| # However the ratio of buggy annotations there is tiny and does not affect accuracy. | |
| # Therefore we explicitly white-list them. | |
| ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] | |
| assert len(set(ann_ids)) == len( | |
| ann_ids | |
| ), "Annotation ids in '{}' are not unique!".format(json_file) | |
| imgs_anns = list(zip(imgs, anns)) | |
| logger.info( | |
| "Loaded {} images in COCO format from {}".format(len(imgs_anns), json_file) | |
| ) | |
| dataset_dicts = [] | |
| ann_keys = ["iscrowd", "bbox", "keypoints", "category_id"] + ( | |
| extra_annotation_keys or [] | |
| ) | |
| num_instances_without_valid_segmentation = 0 | |
| for (img_dict, anno_dict_list) in imgs_anns: | |
| record = {} | |
| record["file_name"] = os.path.join(image_root, img_dict["file_name"]) | |
| record["height"] = img_dict["height"] | |
| record["width"] = img_dict["width"] | |
| image_id = record["image_id"] = img_dict["id"] | |
| objs = [] | |
| for anno in anno_dict_list: | |
| # Check that the image_id in this annotation is the same as | |
| # the image_id we're looking at. | |
| # This fails only when the data parsing logic or the annotation file is buggy. | |
| # The original COCO valminusminival2014 & minival2014 annotation files | |
| # actually contains bugs that, together with certain ways of using COCO API, | |
| # can trigger this assertion. | |
| assert anno["image_id"] == image_id | |
| assert ( | |
| anno.get("ignore", 0) == 0 | |
| ), '"ignore" in COCO json file is not supported.' | |
| obj = {key: anno[key] for key in ann_keys if key in anno} | |
| if "bbox" in obj and len(obj["bbox"]) == 0: | |
| raise ValueError( | |
| f"One annotation of image {image_id} contains empty 'bbox' value! " | |
| "This json does not have valid COCO format." | |
| ) | |
| segm = anno.get("segmentation", None) | |
| if segm: # either list[list[float]] or dict(RLE) | |
| if isinstance(segm, dict): | |
| if isinstance(segm["counts"], list): | |
| # convert to compressed RLE | |
| segm = mask_util.frPyObjects(segm, *segm["size"]) | |
| else: | |
| # filter out invalid polygons (< 3 points) | |
| segm = [ | |
| poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6 | |
| ] | |
| if len(segm) == 0: | |
| num_instances_without_valid_segmentation += 1 | |
| continue # ignore this instance | |
| obj["segmentation"] = segm | |
| keypts = anno.get("keypoints", None) | |
| if keypts: # list[int] | |
| for idx, v in enumerate(keypts): | |
| if idx % 3 != 2: | |
| # COCO's segmentation coordinates are floating points in [0, H or W], | |
| # but keypoint coordinates are integers in [0, H-1 or W-1] | |
| # Therefore we assume the coordinates are "pixel indices" and | |
| # add 0.5 to convert to floating point coordinates. | |
| keypts[idx] = v + 0.5 | |
| obj["keypoints"] = keypts | |
| obj["bbox_mode"] = BoxMode.XYWH_ABS | |
| if id_map: | |
| annotation_category_id = obj["category_id"] | |
| try: | |
| obj["category_id"] = id_map[annotation_category_id] | |
| except KeyError as e: | |
| raise KeyError( | |
| f"Encountered category_id={annotation_category_id} " | |
| "but this id does not exist in 'categories' of the json file." | |
| ) from e | |
| objs.append(obj) | |
| record["annotations"] = objs | |
| dataset_dicts.append(record) | |
| if num_instances_without_valid_segmentation > 0: | |
| logger.warning( | |
| "Filtered out {} instances without valid segmentation. ".format( | |
| num_instances_without_valid_segmentation | |
| ) | |
| + "There might be issues in your dataset generation process. Please " | |
| "check https://detectron2.readthedocs.io/en/latest/tutorials/datasets.html carefully" | |
| ) | |
| return dataset_dicts | |
| def load_sem_seg(gt_root, image_root, gt_ext="png", image_ext="jpg"): | |
| """ | |
| Load semantic segmentation datasets. All files under "gt_root" with "gt_ext" extension are | |
| treated as ground truth annotations and all files under "image_root" with "image_ext" extension | |
| as input images. Ground truth and input images are matched using file paths relative to | |
| "gt_root" and "image_root" respectively without taking into account file extensions. | |
| This works for COCO as well as some other datasets. | |
| Args: | |
| gt_root (str): full path to ground truth semantic segmentation files. Semantic segmentation | |
| annotations are stored as images with integer values in pixels that represent | |
| corresponding semantic labels. | |
| image_root (str): the directory where the input images are. | |
| gt_ext (str): file extension for ground truth annotations. | |
| image_ext (str): file extension for input images. | |
| Returns: | |
| list[dict]: | |
| a list of dicts in detectron2 standard format without instance-level | |
| annotation. | |
| Notes: | |
| 1. This function does not read the image and ground truth files. | |
| The results do not have the "image" and "sem_seg" fields. | |
| """ | |
| # We match input images with ground truth based on their relative filepaths (without file | |
| # extensions) starting from 'image_root' and 'gt_root' respectively. | |
| def file2id(folder_path, file_path): | |
| # extract relative path starting from `folder_path` | |
| image_id = os.path.normpath(os.path.relpath(file_path, start=folder_path)) | |
| # remove file extension | |
| image_id = os.path.splitext(image_id)[0] | |
| return image_id | |
| input_files = sorted( | |
| ( | |
| os.path.join(image_root, f) | |
| for f in PathManager.ls(image_root) | |
| if f.endswith(image_ext) | |
| ), | |
| key=lambda file_path: file2id(image_root, file_path), | |
| ) | |
| gt_files = sorted( | |
| ( | |
| os.path.join(gt_root, f) | |
| for f in PathManager.ls(gt_root) | |
| if f.endswith(gt_ext) | |
| ), | |
| key=lambda file_path: file2id(gt_root, file_path), | |
| ) | |
| assert len(gt_files) > 0, "No annotations found in {}.".format(gt_root) | |
| # Use the intersection, so that val2017_100 annotations can run smoothly with val2017 images | |
| if len(input_files) != len(gt_files): | |
| logger.warn( | |
| "Directory {} and {} has {} and {} files, respectively.".format( | |
| image_root, gt_root, len(input_files), len(gt_files) | |
| ) | |
| ) | |
| input_basenames = [os.path.basename(f)[: -len(image_ext)] for f in input_files] | |
| gt_basenames = [os.path.basename(f)[: -len(gt_ext)] for f in gt_files] | |
| intersect = list(set(input_basenames) & set(gt_basenames)) | |
| # sort, otherwise each worker may obtain a list[dict] in different order | |
| intersect = sorted(intersect) | |
| logger.warn("Will use their intersection of {} files.".format(len(intersect))) | |
| input_files = [os.path.join(image_root, f + image_ext) for f in intersect] | |
| gt_files = [os.path.join(gt_root, f + gt_ext) for f in intersect] | |
| logger.info( | |
| "Loaded {} images with semantic segmentation from {}".format( | |
| len(input_files), image_root | |
| ) | |
| ) | |
| dataset_dicts = [] | |
| for (img_path, gt_path) in zip(input_files, gt_files): | |
| record = {} | |
| record["file_name"] = img_path | |
| record["sem_seg_file_name"] = gt_path | |
| dataset_dicts.append(record) | |
| return dataset_dicts | |
| def convert_to_coco_dict(dataset_name): | |
| """ | |
| Convert an instance detection/segmentation or keypoint detection dataset | |
| in detectron2's standard format into COCO json format. | |
| Generic dataset description can be found here: | |
| https://detectron2.readthedocs.io/tutorials/datasets.html#register-a-dataset | |
| COCO data format description can be found here: | |
| http://cocodataset.org/#format-data | |
| Args: | |
| dataset_name (str): | |
| name of the source dataset | |
| Must be registered in DatastCatalog and in detectron2's standard format. | |
| Must have corresponding metadata "thing_classes" | |
| Returns: | |
| coco_dict: serializable dict in COCO json format | |
| """ | |
| dataset_dicts = DatasetCatalog.get(dataset_name) | |
| metadata = MetadataCatalog.get(dataset_name) | |
| # unmap the category mapping ids for COCO | |
| if hasattr(metadata, "thing_dataset_id_to_contiguous_id"): | |
| reverse_id_mapping = { | |
| v: k for k, v in metadata.thing_dataset_id_to_contiguous_id.items() | |
| } | |
| reverse_id_mapper = lambda contiguous_id: reverse_id_mapping[contiguous_id] # noqa | |
| else: | |
| reverse_id_mapper = lambda contiguous_id: contiguous_id # noqa | |
| categories = [ | |
| {"id": reverse_id_mapper(id), "name": name} | |
| for id, name in enumerate(metadata.thing_classes) | |
| ] | |
| logger.info("Converting dataset dicts into COCO format") | |
| coco_images = [] | |
| coco_annotations = [] | |
| for image_id, image_dict in enumerate(dataset_dicts): | |
| coco_image = { | |
| "id": image_dict.get("image_id", image_id), | |
| "width": int(image_dict["width"]), | |
| "height": int(image_dict["height"]), | |
| "file_name": str(image_dict["file_name"]), | |
| } | |
| coco_images.append(coco_image) | |
| anns_per_image = image_dict.get("annotations", []) | |
| for annotation in anns_per_image: | |
| # create a new dict with only COCO fields | |
| coco_annotation = {} | |
| # COCO requirement: XYWH box format for axis-align and XYWHA for rotated | |
| bbox = annotation["bbox"] | |
| if isinstance(bbox, np.ndarray): | |
| if bbox.ndim != 1: | |
| raise ValueError( | |
| f"bbox has to be 1-dimensional. Got shape={bbox.shape}." | |
| ) | |
| bbox = bbox.tolist() | |
| if len(bbox) not in [4, 5]: | |
| raise ValueError(f"bbox has to has length 4 or 5. Got {bbox}.") | |
| from_bbox_mode = annotation["bbox_mode"] | |
| to_bbox_mode = BoxMode.XYWH_ABS if len(bbox) == 4 else BoxMode.XYWHA_ABS | |
| bbox = BoxMode.convert(bbox, from_bbox_mode, to_bbox_mode) | |
| # COCO requirement: instance area | |
| if "segmentation" in annotation: | |
| # Computing areas for instances by counting the pixels | |
| segmentation = annotation["segmentation"] | |
| # TODO: check segmentation type: RLE, BinaryMask or Polygon | |
| if isinstance(segmentation, list): | |
| polygons = PolygonMasks([segmentation]) | |
| area = polygons.area()[0].item() | |
| elif isinstance(segmentation, dict): # RLE | |
| area = mask_util.area(segmentation).item() | |
| else: | |
| raise TypeError(f"Unknown segmentation type {type(segmentation)}!") | |
| else: | |
| # Computing areas using bounding boxes | |
| if to_bbox_mode == BoxMode.XYWH_ABS: | |
| bbox_xy = BoxMode.convert(bbox, to_bbox_mode, BoxMode.XYXY_ABS) | |
| area = Boxes([bbox_xy]).area()[0].item() | |
| else: | |
| area = RotatedBoxes([bbox]).area()[0].item() | |
| if "keypoints" in annotation: | |
| keypoints = annotation["keypoints"] # list[int] | |
| for idx, v in enumerate(keypoints): | |
| if idx % 3 != 2: | |
| # COCO's segmentation coordinates are floating points in [0, H or W], | |
| # but keypoint coordinates are integers in [0, H-1 or W-1] | |
| # For COCO format consistency we substract 0.5 | |
| # https://github.com/facebookresearch/detectron2/pull/175#issuecomment-551202163 | |
| keypoints[idx] = v - 0.5 | |
| if "num_keypoints" in annotation: | |
| num_keypoints = annotation["num_keypoints"] | |
| else: | |
| num_keypoints = sum(kp > 0 for kp in keypoints[2::3]) | |
| # COCO requirement: | |
| # linking annotations to images | |
| # "id" field must start with 1 | |
| coco_annotation["id"] = len(coco_annotations) + 1 | |
| coco_annotation["image_id"] = coco_image["id"] | |
| coco_annotation["bbox"] = [round(float(x), 3) for x in bbox] | |
| coco_annotation["area"] = float(area) | |
| coco_annotation["iscrowd"] = int(annotation.get("iscrowd", 0)) | |
| coco_annotation["category_id"] = int( | |
| reverse_id_mapper(annotation["category_id"]) | |
| ) | |
| # Add optional fields | |
| if "keypoints" in annotation: | |
| coco_annotation["keypoints"] = keypoints | |
| coco_annotation["num_keypoints"] = num_keypoints | |
| if "segmentation" in annotation: | |
| seg = coco_annotation["segmentation"] = annotation["segmentation"] | |
| if isinstance(seg, dict): # RLE | |
| counts = seg["counts"] | |
| if not isinstance(counts, str): | |
| # make it json-serializable | |
| seg["counts"] = counts.decode("ascii") | |
| coco_annotations.append(coco_annotation) | |
| logger.info( | |
| "Conversion finished, " | |
| f"#images: {len(coco_images)}, #annotations: {len(coco_annotations)}" | |
| ) | |
| info = { | |
| "date_created": str(datetime.datetime.now()), | |
| "description": "Automatically generated COCO json file for Detectron2.", | |
| } | |
| coco_dict = { | |
| "info": info, | |
| "images": coco_images, | |
| "categories": categories, | |
| "licenses": None, | |
| } | |
| if len(coco_annotations) > 0: | |
| coco_dict["annotations"] = coco_annotations | |
| return coco_dict | |
| def convert_to_coco_json(dataset_name, output_file, allow_cached=True): | |
| """ | |
| Converts dataset into COCO format and saves it to a json file. | |
| dataset_name must be registered in DatasetCatalog and in detectron2's standard format. | |
| Args: | |
| dataset_name: | |
| reference from the config file to the catalogs | |
| must be registered in DatasetCatalog and in detectron2's standard format | |
| output_file: path of json file that will be saved to | |
| allow_cached: if json file is already present then skip conversion | |
| """ | |
| # TODO: The dataset or the conversion script *may* change, | |
| # a checksum would be useful for validating the cached data | |
| PathManager.mkdirs(os.path.dirname(output_file)) | |
| with file_lock(output_file): | |
| if PathManager.exists(output_file) and allow_cached: | |
| logger.warning( | |
| f"Using previously cached COCO format annotations at '{output_file}'. " | |
| "You need to clear the cache file if your dataset has been modified." | |
| ) | |
| else: | |
| logger.info( | |
| f"Converting annotations of dataset '{dataset_name}' to COCO format ...)" | |
| ) | |
| coco_dict = convert_to_coco_dict(dataset_name) | |
| logger.info(f"Caching COCO format annotations at '{output_file}' ...") | |
| tmp_file = output_file + ".tmp" | |
| with PathManager.open(tmp_file, "w") as f: | |
| json.dump(coco_dict, f) | |
| shutil.move(tmp_file, output_file) | |
| def register_coco_instances(name, metadata, json_file, image_root): | |
| """ | |
| Register a dataset in COCO's json annotation format for | |
| instance detection, instance segmentation and keypoint detection. | |
| (i.e., Type 1 and 2 in http://cocodataset.org/#format-data. | |
| `instances*.json` and `person_keypoints*.json` in the dataset). | |
| This is an example of how to register a new dataset. | |
| You can do something similar to this function, to register new datasets. | |
| Args: | |
| name (str): the name that identifies a dataset, e.g. "coco_2014_train". | |
| metadata (dict): extra metadata associated with this dataset. You can | |
| leave it as an empty dict. | |
| json_file (str): path to the json instance annotation file. | |
| image_root (str or path-like): directory which contains all the images. | |
| """ | |
| assert isinstance(name, str), name | |
| assert isinstance(json_file, (str, os.PathLike)), json_file | |
| assert isinstance(image_root, (str, os.PathLike)), image_root | |
| # 1. register a function which returns dicts | |
| DatasetCatalog.register(name, lambda: load_coco_json(json_file, image_root, name)) | |
| # 2. Optionally, add metadata about this dataset, | |
| # since they might be useful in evaluation, visualization or logging | |
| MetadataCatalog.get(name).set( | |
| json_file=json_file, image_root=image_root, evaluator_type="coco", **metadata | |
| ) | |
| def main() -> None: | |
| global logger | |
| """ | |
| Test the COCO json dataset loader. | |
| Usage: | |
| python -m detectron2.data.datasets.coco \ | |
| path/to/json path/to/image_root dataset_name | |
| "dataset_name" can be "coco_2014_minival_100", or other | |
| pre-registered ones | |
| """ | |
| import sys | |
| import detectron2.data.datasets # noqa # add pre-defined metadata | |
| from detectron2.utils.logger import setup_logger | |
| from detectron2.utils.visualizer import Visualizer | |
| logger = setup_logger(name=__name__) | |
| assert sys.argv[3] in DatasetCatalog.list() | |
| meta = MetadataCatalog.get(sys.argv[3]) | |
| dicts = load_coco_json(sys.argv[1], sys.argv[2], sys.argv[3]) | |
| logger.info("Done loading {} samples.".format(len(dicts))) | |
| dirname = "coco-data-vis" | |
| os.makedirs(dirname, exist_ok=True) | |
| for d in dicts: | |
| img = np.array(Image.open(d["file_name"])) | |
| visualizer = Visualizer(img, metadata=meta) | |
| vis = visualizer.draw_dataset_dict(d) | |
| fpath = os.path.join(dirname, os.path.basename(d["file_name"])) | |
| vis.save(fpath) | |
| if __name__ == "__main__": | |
| main() # pragma: no cover | |