Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import math | |
| import numpy as np | |
| from enum import IntEnum, unique | |
| from typing import List, Tuple, Union | |
| import torch | |
| from torch import device | |
| _RawBoxType = Union[List[float], Tuple[float, ...], torch.Tensor, np.ndarray] | |
| class BoxMode(IntEnum): | |
| """ | |
| Enum of different ways to represent a box. | |
| """ | |
| XYXY_ABS = 0 | |
| """ | |
| (x0, y0, x1, y1) in absolute floating points coordinates. | |
| The coordinates in range [0, width or height]. | |
| """ | |
| XYWH_ABS = 1 | |
| """ | |
| (x0, y0, w, h) in absolute floating points coordinates. | |
| """ | |
| XYXY_REL = 2 | |
| """ | |
| Not yet supported! | |
| (x0, y0, x1, y1) in range [0, 1]. They are relative to the size of the image. | |
| """ | |
| XYWH_REL = 3 | |
| """ | |
| Not yet supported! | |
| (x0, y0, w, h) in range [0, 1]. They are relative to the size of the image. | |
| """ | |
| XYWHA_ABS = 4 | |
| """ | |
| (xc, yc, w, h, a) in absolute floating points coordinates. | |
| (xc, yc) is the center of the rotated box, and the angle a is in degrees ccw. | |
| """ | |
| def convert(box: _RawBoxType, from_mode: "BoxMode", to_mode: "BoxMode") -> _RawBoxType: | |
| """ | |
| Args: | |
| box: can be a k-tuple, k-list or an Nxk array/tensor, where k = 4 or 5 | |
| from_mode, to_mode (BoxMode) | |
| Returns: | |
| The converted box of the same type. | |
| """ | |
| if from_mode == to_mode: | |
| return box | |
| original_type = type(box) | |
| is_numpy = isinstance(box, np.ndarray) | |
| single_box = isinstance(box, (list, tuple)) | |
| if single_box: | |
| assert len(box) == 4 or len(box) == 5, ( | |
| "BoxMode.convert takes either a k-tuple/list or an Nxk array/tensor," | |
| " where k == 4 or 5" | |
| ) | |
| arr = torch.tensor(box)[None, :] | |
| else: | |
| # avoid modifying the input box | |
| if is_numpy: | |
| arr = torch.from_numpy(np.asarray(box)).clone() | |
| else: | |
| arr = box.clone() | |
| assert to_mode not in [BoxMode.XYXY_REL, BoxMode.XYWH_REL] and from_mode not in [ | |
| BoxMode.XYXY_REL, | |
| BoxMode.XYWH_REL, | |
| ], "Relative mode not yet supported!" | |
| if from_mode == BoxMode.XYWHA_ABS and to_mode == BoxMode.XYXY_ABS: | |
| assert ( | |
| arr.shape[-1] == 5 | |
| ), "The last dimension of input shape must be 5 for XYWHA format" | |
| original_dtype = arr.dtype | |
| arr = arr.double() | |
| w = arr[:, 2] | |
| h = arr[:, 3] | |
| a = arr[:, 4] | |
| c = torch.abs(torch.cos(a * math.pi / 180.0)) | |
| s = torch.abs(torch.sin(a * math.pi / 180.0)) | |
| # This basically computes the horizontal bounding rectangle of the rotated box | |
| new_w = c * w + s * h | |
| new_h = c * h + s * w | |
| # convert center to top-left corner | |
| arr[:, 0] -= new_w / 2.0 | |
| arr[:, 1] -= new_h / 2.0 | |
| # bottom-right corner | |
| arr[:, 2] = arr[:, 0] + new_w | |
| arr[:, 3] = arr[:, 1] + new_h | |
| arr = arr[:, :4].to(dtype=original_dtype) | |
| elif from_mode == BoxMode.XYWH_ABS and to_mode == BoxMode.XYWHA_ABS: | |
| original_dtype = arr.dtype | |
| arr = arr.double() | |
| arr[:, 0] += arr[:, 2] / 2.0 | |
| arr[:, 1] += arr[:, 3] / 2.0 | |
| angles = torch.zeros((arr.shape[0], 1), dtype=arr.dtype) | |
| arr = torch.cat((arr, angles), axis=1).to(dtype=original_dtype) | |
| else: | |
| if to_mode == BoxMode.XYXY_ABS and from_mode == BoxMode.XYWH_ABS: | |
| arr[:, 2] += arr[:, 0] | |
| arr[:, 3] += arr[:, 1] | |
| elif from_mode == BoxMode.XYXY_ABS and to_mode == BoxMode.XYWH_ABS: | |
| arr[:, 2] -= arr[:, 0] | |
| arr[:, 3] -= arr[:, 1] | |
| else: | |
| raise NotImplementedError( | |
| "Conversion from BoxMode {} to {} is not supported yet".format( | |
| from_mode, to_mode | |
| ) | |
| ) | |
| if single_box: | |
| return original_type(arr.flatten().tolist()) | |
| if is_numpy: | |
| return arr.numpy() | |
| else: | |
| return arr | |
| class Boxes: | |
| """ | |
| This structure stores a list of boxes as a Nx4 torch.Tensor. | |
| It supports some common methods about boxes | |
| (`area`, `clip`, `nonempty`, etc), | |
| and also behaves like a Tensor | |
| (support indexing, `to(device)`, `.device`, and iteration over all boxes) | |
| Attributes: | |
| tensor (torch.Tensor): float matrix of Nx4. Each row is (x1, y1, x2, y2). | |
| """ | |
| def __init__(self, tensor: torch.Tensor): | |
| """ | |
| Args: | |
| tensor (Tensor[float]): a Nx4 matrix. Each row is (x1, y1, x2, y2). | |
| """ | |
| if not isinstance(tensor, torch.Tensor): | |
| tensor = torch.as_tensor(tensor, dtype=torch.float32, device=torch.device("cpu")) | |
| else: | |
| tensor = tensor.to(torch.float32) | |
| if tensor.numel() == 0: | |
| # Use reshape, so we don't end up creating a new tensor that does not depend on | |
| # the inputs (and consequently confuses jit) | |
| tensor = tensor.reshape((-1, 4)).to(dtype=torch.float32) | |
| assert tensor.dim() == 2 and tensor.size(-1) == 4, tensor.size() | |
| self.tensor = tensor | |
| def clone(self) -> "Boxes": | |
| """ | |
| Clone the Boxes. | |
| Returns: | |
| Boxes | |
| """ | |
| return Boxes(self.tensor.clone()) | |
| def to(self, device: torch.device): | |
| # Boxes are assumed float32 and does not support to(dtype) | |
| return Boxes(self.tensor.to(device=device)) | |
| def area(self) -> torch.Tensor: | |
| """ | |
| Computes the area of all the boxes. | |
| Returns: | |
| torch.Tensor: a vector with areas of each box. | |
| """ | |
| box = self.tensor | |
| area = (box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1]) | |
| return area | |
| def clip(self, box_size: Tuple[int, int]) -> None: | |
| """ | |
| Clip (in place) the boxes by limiting x coordinates to the range [0, width] | |
| and y coordinates to the range [0, height]. | |
| Args: | |
| box_size (height, width): The clipping box's size. | |
| """ | |
| assert torch.isfinite(self.tensor).all(), "Box tensor contains infinite or NaN!" | |
| h, w = box_size | |
| x1 = self.tensor[:, 0].clamp(min=0, max=w) | |
| y1 = self.tensor[:, 1].clamp(min=0, max=h) | |
| x2 = self.tensor[:, 2].clamp(min=0, max=w) | |
| y2 = self.tensor[:, 3].clamp(min=0, max=h) | |
| self.tensor = torch.stack((x1, y1, x2, y2), dim=-1) | |
| def nonempty(self, threshold: float = 0.0) -> torch.Tensor: | |
| """ | |
| Find boxes that are non-empty. | |
| A box is considered empty, if either of its side is no larger than threshold. | |
| Returns: | |
| Tensor: | |
| a binary vector which represents whether each box is empty | |
| (False) or non-empty (True). | |
| """ | |
| box = self.tensor | |
| widths = box[:, 2] - box[:, 0] | |
| heights = box[:, 3] - box[:, 1] | |
| keep = (widths > threshold) & (heights > threshold) | |
| return keep | |
| def __getitem__(self, item) -> "Boxes": | |
| """ | |
| Args: | |
| item: int, slice, or a BoolTensor | |
| Returns: | |
| Boxes: Create a new :class:`Boxes` by indexing. | |
| The following usage are allowed: | |
| 1. `new_boxes = boxes[3]`: return a `Boxes` which contains only one box. | |
| 2. `new_boxes = boxes[2:10]`: return a slice of boxes. | |
| 3. `new_boxes = boxes[vector]`, where vector is a torch.BoolTensor | |
| with `length = len(boxes)`. Nonzero elements in the vector will be selected. | |
| Note that the returned Boxes might share storage with this Boxes, | |
| subject to Pytorch's indexing semantics. | |
| """ | |
| if isinstance(item, int): | |
| return Boxes(self.tensor[item].view(1, -1)) | |
| b = self.tensor[item] | |
| assert b.dim() == 2, "Indexing on Boxes with {} failed to return a matrix!".format(item) | |
| return Boxes(b) | |
| def __len__(self) -> int: | |
| return self.tensor.shape[0] | |
| def __repr__(self) -> str: | |
| return "Boxes(" + str(self.tensor) + ")" | |
| def inside_box(self, box_size: Tuple[int, int], boundary_threshold: int = 0) -> torch.Tensor: | |
| """ | |
| Args: | |
| box_size (height, width): Size of the reference box. | |
| boundary_threshold (int): Boxes that extend beyond the reference box | |
| boundary by more than boundary_threshold are considered "outside". | |
| Returns: | |
| a binary vector, indicating whether each box is inside the reference box. | |
| """ | |
| height, width = box_size | |
| inds_inside = ( | |
| (self.tensor[..., 0] >= -boundary_threshold) | |
| & (self.tensor[..., 1] >= -boundary_threshold) | |
| & (self.tensor[..., 2] < width + boundary_threshold) | |
| & (self.tensor[..., 3] < height + boundary_threshold) | |
| ) | |
| return inds_inside | |
| def get_centers(self) -> torch.Tensor: | |
| """ | |
| Returns: | |
| The box centers in a Nx2 array of (x, y). | |
| """ | |
| return (self.tensor[:, :2] + self.tensor[:, 2:]) / 2 | |
| def scale(self, scale_x: float, scale_y: float) -> None: | |
| """ | |
| Scale the box with horizontal and vertical scaling factors | |
| """ | |
| self.tensor[:, 0::2] *= scale_x | |
| self.tensor[:, 1::2] *= scale_y | |
| def cat(cls, boxes_list: List["Boxes"]) -> "Boxes": | |
| """ | |
| Concatenates a list of Boxes into a single Boxes | |
| Arguments: | |
| boxes_list (list[Boxes]) | |
| Returns: | |
| Boxes: the concatenated Boxes | |
| """ | |
| assert isinstance(boxes_list, (list, tuple)) | |
| if len(boxes_list) == 0: | |
| return cls(torch.empty(0)) | |
| assert all([isinstance(box, Boxes) for box in boxes_list]) | |
| # use torch.cat (v.s. layers.cat) so the returned boxes never share storage with input | |
| cat_boxes = cls(torch.cat([b.tensor for b in boxes_list], dim=0)) | |
| return cat_boxes | |
| def device(self) -> device: | |
| return self.tensor.device | |
| # type "Iterator[torch.Tensor]", yield, and iter() not supported by torchscript | |
| # https://github.com/pytorch/pytorch/issues/18627 | |
| def __iter__(self): | |
| """ | |
| Yield a box as a Tensor of shape (4,) at a time. | |
| """ | |
| yield from self.tensor | |
| def pairwise_intersection(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: | |
| """ | |
| Given two lists of boxes of size N and M, | |
| compute the intersection area between __all__ N x M pairs of boxes. | |
| The box order must be (xmin, ymin, xmax, ymax) | |
| Args: | |
| boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. | |
| Returns: | |
| Tensor: intersection, sized [N,M]. | |
| """ | |
| boxes1, boxes2 = boxes1.tensor, boxes2.tensor | |
| width_height = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) - torch.max( | |
| boxes1[:, None, :2], boxes2[:, :2] | |
| ) # [N,M,2] | |
| width_height.clamp_(min=0) # [N,M,2] | |
| intersection = width_height.prod(dim=2) # [N,M] | |
| return intersection | |
| # implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py | |
| # with slight modifications | |
| def pairwise_iou(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: | |
| """ | |
| Given two lists of boxes of size N and M, compute the IoU | |
| (intersection over union) between **all** N x M pairs of boxes. | |
| The box order must be (xmin, ymin, xmax, ymax). | |
| Args: | |
| boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. | |
| Returns: | |
| Tensor: IoU, sized [N,M]. | |
| """ | |
| area1 = boxes1.area() # [N] | |
| area2 = boxes2.area() # [M] | |
| inter = pairwise_intersection(boxes1, boxes2) | |
| # handle empty boxes | |
| iou = torch.where( | |
| inter > 0, | |
| inter / (area1[:, None] + area2 - inter), | |
| torch.zeros(1, dtype=inter.dtype, device=inter.device), | |
| ) | |
| return iou | |
| def pairwise_ioa(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: | |
| """ | |
| Similar to :func:`pariwise_iou` but compute the IoA (intersection over boxes2 area). | |
| Args: | |
| boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. | |
| Returns: | |
| Tensor: IoA, sized [N,M]. | |
| """ | |
| area2 = boxes2.area() # [M] | |
| inter = pairwise_intersection(boxes1, boxes2) | |
| # handle empty boxes | |
| ioa = torch.where( | |
| inter > 0, inter / area2, torch.zeros(1, dtype=inter.dtype, device=inter.device) | |
| ) | |
| return ioa | |
| def pairwise_point_box_distance(points: torch.Tensor, boxes: Boxes): | |
| """ | |
| Pairwise distance between N points and M boxes. The distance between a | |
| point and a box is represented by the distance from the point to 4 edges | |
| of the box. Distances are all positive when the point is inside the box. | |
| Args: | |
| points: Nx2 coordinates. Each row is (x, y) | |
| boxes: M boxes | |
| Returns: | |
| Tensor: distances of size (N, M, 4). The 4 values are distances from | |
| the point to the left, top, right, bottom of the box. | |
| """ | |
| x, y = points.unsqueeze(dim=2).unbind(dim=1) # (N, 1) | |
| x0, y0, x1, y1 = boxes.tensor.unsqueeze(dim=0).unbind(dim=2) # (1, M) | |
| return torch.stack([x - x0, y - y0, x1 - x, y1 - y], dim=2) | |
| def matched_pairwise_iou(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: | |
| """ | |
| Compute pairwise intersection over union (IOU) of two sets of matched | |
| boxes that have the same number of boxes. | |
| Similar to :func:`pairwise_iou`, but computes only diagonal elements of the matrix. | |
| Args: | |
| boxes1 (Boxes): bounding boxes, sized [N,4]. | |
| boxes2 (Boxes): same length as boxes1 | |
| Returns: | |
| Tensor: iou, sized [N]. | |
| """ | |
| assert len(boxes1) == len( | |
| boxes2 | |
| ), "boxlists should have the same" "number of entries, got {}, {}".format( | |
| len(boxes1), len(boxes2) | |
| ) | |
| area1 = boxes1.area() # [N] | |
| area2 = boxes2.area() # [N] | |
| box1, box2 = boxes1.tensor, boxes2.tensor | |
| lt = torch.max(box1[:, :2], box2[:, :2]) # [N,2] | |
| rb = torch.min(box1[:, 2:], box2[:, 2:]) # [N,2] | |
| wh = (rb - lt).clamp(min=0) # [N,2] | |
| inter = wh[:, 0] * wh[:, 1] # [N] | |
| iou = inter / (area1 + area2 - inter) # [N] | |
| return iou | |