Spaces:
Sleeping
Sleeping
from typing import Any, Dict | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
from gradio_image_annotation import image_annotator | |
from sam2 import load_model | |
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator | |
from sam2.sam2_image_predictor import SAM2ImagePredictor | |
from src.plot_utils import export_mask | |
# @spaces.GPU() | |
def predict(model_choice, annotations: Dict[str, Any]): | |
sam2_model = load_model( | |
variant=model_choice, | |
ckpt_path=f"assets/checkpoints/sam2_hiera_{model_choice}.pt", | |
device="cpu", | |
) | |
if annotations["boxes"]: | |
predictor = SAM2ImagePredictor(sam2_model) # type:ignore | |
predictor.set_image(annotations["image"]) | |
coordinates = [] | |
for i in range(len(annotations["boxes"])): | |
coordinate = [ | |
int(annotations["boxes"][i]["xmin"]), | |
int(annotations["boxes"][i]["ymin"]), | |
int(annotations["boxes"][i]["xmax"]), | |
int(annotations["boxes"][i]["ymax"]), | |
] | |
coordinates.append(coordinate) | |
masks, scores, _ = predictor.predict( | |
point_coords=None, | |
point_labels=None, | |
box=np.array(coordinates), | |
multimask_output=False, | |
) | |
if masks.shape[0] == 1: | |
# handle single mask cases | |
masks = np.expand_dims(masks, axis=0) | |
return export_mask(masks) | |
else: | |
mask_generator = SAM2AutomaticMaskGenerator(sam2_model) # type: ignore | |
masks = mask_generator.generate(annotations["image"]) | |
return export_mask(masks, autogenerated=True) | |
with gr.Blocks(delete_cache=(30, 30)) as demo: | |
gr.Markdown( | |
""" | |
# 1. Choose Model Checkpoint | |
""" | |
) | |
with gr.Row(): | |
model = gr.Dropdown( | |
choices=["tiny", "small", "base_plus", "large"], | |
value="tiny", | |
label="Model Checkpoint", | |
info="Which model checkpoint to load?", | |
) | |
gr.Markdown( | |
""" | |
# 2. Upload your Image and draw bounding box(es) | |
""" | |
) | |
annotator = image_annotator( | |
value={"image": cv2.imread("assets/example.png")}, | |
disable_edit_boxes=True, | |
label="Draw a bounding box", | |
) | |
btn = gr.Button("Get Segmentation Mask(s)") | |
btn.click( | |
fn=predict, inputs=[model, annotator], outputs=[gr.Image(label="Mask(s)")] | |
) | |
demo.launch() | |