|
|
|
|
|
|
|
""" |
|
@Author : Peike Li |
|
@Contact : [email protected] |
|
@File : simple_extractor.py |
|
@Time : 8/30/19 8:59 PM |
|
@Desc : Simple Extractor |
|
@License : This source code is licensed under the license found in the |
|
LICENSE file in the root directory of this source tree. |
|
""" |
|
import threading |
|
from queue import Queue |
|
from tqdm import tqdm |
|
import os |
|
import torch |
|
import argparse |
|
import numpy as np |
|
from PIL import Image |
|
from tqdm import tqdm |
|
import cv2 |
|
|
|
from torch.utils.data import DataLoader |
|
import torchvision.transforms as transforms |
|
|
|
import networks |
|
from utils.transforms import transform_logits |
|
from datasets.simple_extractor_dataset import SimpleFolderDataset |
|
from utils.transforms import get_affine_transform |
|
|
|
dataset_settings = { |
|
'lip': { |
|
'input_size': [473, 473], |
|
'num_classes': 20, |
|
'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', |
|
'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', |
|
'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'] |
|
}, |
|
'atr': { |
|
'input_size': [512, 512], |
|
'num_classes': 18, |
|
'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt', |
|
'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf'] |
|
}, |
|
'pascal': { |
|
'input_size': [512, 512], |
|
'num_classes': 7, |
|
'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'], |
|
} |
|
} |
|
|
|
def _box2cs(box,input_size): |
|
x, y, w, h = box[:4] |
|
return _xywh2cs(x, y, w, h,input_size) |
|
|
|
def _xywh2cs(x, y, w, h,input_size): |
|
aspect_ratio = input_size[1] * 1.0 / input_size[0] |
|
center = np.zeros((2), dtype=np.float32) |
|
center[0] = x + w * 0.5 |
|
center[1] = y + h * 0.5 |
|
if w > aspect_ratio * h: |
|
h = w * 1.0 / aspect_ratio |
|
elif w < aspect_ratio * h: |
|
w = h * aspect_ratio |
|
scale = np.array([w, h], dtype=np.float32) |
|
return center, scale |
|
|
|
def get_arguments(): |
|
"""Parse all the arguments provided from the CLI. |
|
Returns: |
|
A list of parsed arguments. |
|
""" |
|
parser = argparse.ArgumentParser(description="Self Correction for Human Parsing") |
|
|
|
parser.add_argument("--dataset", type=str, default='atr', choices=['lip', 'atr', 'pascal']) |
|
parser.add_argument("--model-restore", type=str, |
|
default='/data1/chongzheng/zhangwq/Self-Correction-Human-Parsing-master/exp-schp-201908301523-atr.pth', |
|
help="restore pretrained model parameters.") |
|
parser.add_argument("--gpu", type=str, default='0', help="choose gpu device.") |
|
parser.add_argument("--input-dir", type=str, default='/home/chongzheng_p23/data/Datasets/UniFashion/YOOX/YOOX-Images', help="path of input image folder.") |
|
parser.add_argument("--output-dir", type=str, default='/home/chongzheng_p23/data/Datasets/UniFashion/YOOX/YOOX-SCHP', help="path of output image folder.") |
|
parser.add_argument("--logits", action='store_true', default=False, help="whether to save the logits.") |
|
|
|
return parser.parse_args() |
|
|
|
|
|
def get_palette(num_cls): |
|
""" Returns the color map for visualizing the segmentation mask. |
|
Args: |
|
num_cls: Number of classes |
|
Returns: |
|
The color map |
|
""" |
|
n = num_cls |
|
palette = [0] * (n * 3) |
|
for j in range(0, n): |
|
lab = j |
|
palette[j * 3 + 0] = 0 |
|
palette[j * 3 + 1] = 0 |
|
palette[j * 3 + 2] = 0 |
|
i = 0 |
|
while lab: |
|
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) |
|
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) |
|
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) |
|
i += 1 |
|
lab >>= 3 |
|
return palette |
|
|
|
|
|
def schp_process(image_queue,model,progress_bar,input_size,transform): |
|
while True: |
|
img_path = image_queue.get() |
|
image_queue.task_done() |
|
|
|
if img_path is None: |
|
break |
|
|
|
save_path = img_path.replace("YOOX-Images","YOOX-SCHP").replace(".jpg",".png") |
|
if os.path.exists(save_path): |
|
progress_bar.update(1) |
|
continue |
|
|
|
root = os.path.dirname(img_path) |
|
img_name = img_path.split("/")[-1].split(".")[0] |
|
img = cv2.imread(img_path, cv2.IMREAD_COLOR) |
|
if img is None: |
|
progress_bar.update(1) |
|
continue |
|
if img is not None: |
|
h, w, _ = img.shape |
|
|
|
person_center, s = _box2cs([0, 0, w - 1, h - 1],input_size) |
|
r = 0 |
|
trans = get_affine_transform(person_center, s, r, input_size) |
|
input = cv2.warpAffine( |
|
img, |
|
trans, |
|
(int(input_size[1]), int(input_size[0])), |
|
flags=cv2.INTER_LINEAR, |
|
borderMode=cv2.BORDER_CONSTANT, |
|
borderValue=(0, 0, 0)) |
|
|
|
image = transform(input) |
|
meta = { |
|
'img_path': img_path, |
|
'name': img_name, |
|
'root': root, |
|
'center': person_center, |
|
'height': h, |
|
'width': w, |
|
'scale': s, |
|
'rotation': r |
|
} |
|
|
|
|
|
if not os.path.exists(save_path): |
|
img_name = meta['name'][0] |
|
c = meta['center'][0] |
|
|
|
|
|
|
|
root = meta['root'][0] |
|
save_root = root.replace("YOOX-Images","YOOX-SCHP") |
|
|
|
if not os.path.exists(save_root): |
|
os.makedirs(save_root) |
|
|
|
output = model(image.cuda()) |
|
upsample = torch.nn.Upsample(size=input_size, mode='bilinear', align_corners=True) |
|
upsample_output = upsample(output[0][-1][0].unsqueeze(0)) |
|
upsample_output = upsample_output.squeeze() |
|
upsample_output = upsample_output.permute(1, 2, 0) |
|
|
|
logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=input_size) |
|
parsing_result = np.argmax(logits_result, axis=2) |
|
parsing_result_path = save_path |
|
output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8)) |
|
output_img.putpalette(palette) |
|
output_img.save(parsing_result_path) |
|
progress_bar.update(1) |
|
|
|
|
|
|
|
def main(): |
|
args = get_arguments() |
|
|
|
gpus = [int(i) for i in args.gpu.split(',')] |
|
assert len(gpus) == 1 |
|
if not args.gpu == 'None': |
|
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu |
|
|
|
num_classes = dataset_settings[args.dataset]['num_classes'] |
|
input_size = dataset_settings[args.dataset]['input_size'] |
|
label = dataset_settings[args.dataset]['label'] |
|
print("Evaluating total class number {} with {}".format(num_classes, label)) |
|
|
|
model = networks.init_model('resnet101', num_classes=num_classes, pretrained=None) |
|
|
|
state_dict = torch.load(args.model_restore)['state_dict'] |
|
from collections import OrderedDict |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
name = k[7:] |
|
new_state_dict[name] = v |
|
model.load_state_dict(new_state_dict) |
|
model.cuda() |
|
model.eval() |
|
|
|
transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229]) |
|
]) |
|
|
|
|
|
image_queue = Queue() |
|
for root, dirs, files in os.walk("/home/chongzheng_p23/data/Datasets/UniFashion/YOOX/YOOX-Images"): |
|
for file in files: |
|
if file.endswith(".jpg"): |
|
source_file_path = os.path.join(root, file) |
|
image_queue.put(source_file_path) |
|
|
|
if not os.path.exists(args.output_dir): |
|
os.makedirs(args.output_dir) |
|
|
|
palette = get_palette(num_classes) |
|
|
|
progress_bar = tqdm(total=image_queue.qsize(), desc="Processing SCHP") |
|
|
|
with torch.no_grad(): |
|
devices = [1]*2 |
|
consumer_threads = [] |
|
for i in devices: |
|
device = f'cuda:{i}' |
|
consumer_threads.append(threading.Thread(target=schp_process, |
|
args=(image_queue,model,progress_bar,input_size,transform))) |
|
consumer_threads[-1].start() |
|
|
|
|
|
|
|
return |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|