Integrando FastAPI con Gradio para endpoints API funcionales
Browse files
app.py
CHANGED
|
@@ -8,6 +8,9 @@ import io
|
|
| 8 |
import base64
|
| 9 |
import os
|
| 10 |
from huggingface_hub import login
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Configurar autenticaci贸n con Hugging Face
|
| 13 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
@@ -20,6 +23,28 @@ if HF_TOKEN:
|
|
| 20 |
else:
|
| 21 |
print("鈿狅笍 No se encontr贸 HF_TOKEN - modelos gated no estar谩n disponibles")
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# Configuraci贸n de modelos libres
|
| 24 |
MODELS = {
|
| 25 |
"text": {
|
|
@@ -558,128 +583,79 @@ with gr.Blocks(title="Modelos Libres de IA", theme=gr.themes.Soft()) as demo:
|
|
| 558 |
|
| 559 |
# Configuraci贸n para Hugging Face Spaces
|
| 560 |
if __name__ == "__main__":
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 565 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 566 |
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
app = FastAPI(title="NTIA Space API")
|
| 576 |
-
|
| 577 |
-
# Configurar CORS
|
| 578 |
-
app.add_middleware(
|
| 579 |
-
CORSMiddleware,
|
| 580 |
-
allow_origins=["*"],
|
| 581 |
-
allow_credentials=True,
|
| 582 |
-
allow_methods=["*"],
|
| 583 |
-
allow_headers=["*"],
|
| 584 |
-
)
|
| 585 |
-
|
| 586 |
-
class TextRequest(BaseModel):
|
| 587 |
-
prompt: str
|
| 588 |
-
model_name: str
|
| 589 |
-
max_length: int = 100
|
| 590 |
-
|
| 591 |
-
class ImageRequest(BaseModel):
|
| 592 |
-
prompt: str
|
| 593 |
-
model_name: str
|
| 594 |
-
num_inference_steps: int = 20
|
| 595 |
-
|
| 596 |
-
class VideoRequest(BaseModel):
|
| 597 |
-
prompt: str
|
| 598 |
-
model_name: str
|
| 599 |
-
num_frames: int = 16
|
| 600 |
-
num_inference_steps: int = 20
|
| 601 |
-
|
| 602 |
-
class ChatRequest(BaseModel):
|
| 603 |
-
message: str
|
| 604 |
-
history: list
|
| 605 |
-
model_name: str
|
| 606 |
-
|
| 607 |
-
@app.post("/generate_text")
|
| 608 |
-
async def api_generate_text(request: TextRequest):
|
| 609 |
-
try:
|
| 610 |
-
result = generate_text(request.prompt, request.model_name, request.max_length)
|
| 611 |
-
return {"response": result}
|
| 612 |
-
except Exception as e:
|
| 613 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 614 |
-
|
| 615 |
-
@app.post("/generate_image")
|
| 616 |
-
async def api_generate_image(request: ImageRequest):
|
| 617 |
-
try:
|
| 618 |
-
result = generate_image(request.prompt, request.model_name, request.num_inference_steps)
|
| 619 |
-
|
| 620 |
-
# Convertir imagen a base64
|
| 621 |
-
if isinstance(result, str) and result.startswith("Error"):
|
| 622 |
-
raise HTTPException(status_code=500, detail=result)
|
| 623 |
-
|
| 624 |
-
# Convertir PIL Image a base64
|
| 625 |
-
buffer = BytesIO()
|
| 626 |
-
result.save(buffer, format="PNG")
|
| 627 |
-
img_str = base64.b64encode(buffer.getvalue()).decode()
|
| 628 |
-
|
| 629 |
-
return {"image": f"data:image/png;base64,{img_str}"}
|
| 630 |
-
except Exception as e:
|
| 631 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 632 |
-
|
| 633 |
-
@app.post("/generate_video")
|
| 634 |
-
async def api_generate_video(request: VideoRequest):
|
| 635 |
-
try:
|
| 636 |
-
result = generate_video(request.prompt, request.model_name, request.num_frames, request.num_inference_steps)
|
| 637 |
-
|
| 638 |
-
if isinstance(result, str) and result.startswith("Error"):
|
| 639 |
-
raise HTTPException(status_code=500, detail=result)
|
| 640 |
-
|
| 641 |
-
# Convertir frames a video (simplificado)
|
| 642 |
-
# En producci贸n, usar铆as ffmpeg para crear un video real
|
| 643 |
-
return {"video": "video_data_placeholder", "frames": len(result) if isinstance(result, list) else 0}
|
| 644 |
-
except Exception as e:
|
| 645 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 646 |
|
| 647 |
-
@app.post("/
|
| 648 |
-
async def
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 654 |
|
| 655 |
-
@app.
|
| 656 |
-
async def
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
"
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
{"id": k, "label": v} for k, v in MODELS["image"].items()
|
| 667 |
-
] if isinstance(MODELS["image"], dict) else [
|
| 668 |
-
{"id": k, "label": v} for k, v in MODELS["image"].items()
|
| 669 |
-
],
|
| 670 |
-
"video": [
|
| 671 |
-
{"id": k, "label": v} for k, v in MODELS["video"].items()
|
| 672 |
-
] if isinstance(MODELS["video"], dict) else [
|
| 673 |
-
{"id": k, "label": v} for k, v in MODELS["video"].items()
|
| 674 |
-
],
|
| 675 |
-
"chat": [
|
| 676 |
-
{"id": k, "label": v} for k, v in MODELS["chat"].items()
|
| 677 |
-
] if isinstance(MODELS["chat"], dict) else [
|
| 678 |
-
{"id": k, "label": v} for k, v in MODELS["chat"].items()
|
| 679 |
-
]
|
| 680 |
-
}
|
| 681 |
-
except Exception as e:
|
| 682 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 683 |
|
| 684 |
-
|
| 685 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import base64
|
| 9 |
import os
|
| 10 |
from huggingface_hub import login
|
| 11 |
+
from fastapi import FastAPI, HTTPException
|
| 12 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 13 |
+
from pydantic import BaseModel
|
| 14 |
|
| 15 |
# Configurar autenticaci贸n con Hugging Face
|
| 16 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
| 23 |
else:
|
| 24 |
print("鈿狅笍 No se encontr贸 HF_TOKEN - modelos gated no estar谩n disponibles")
|
| 25 |
|
| 26 |
+
# Clases para los endpoints API
|
| 27 |
+
class TextRequest(BaseModel):
|
| 28 |
+
prompt: str
|
| 29 |
+
model_name: str
|
| 30 |
+
max_length: int = 100
|
| 31 |
+
|
| 32 |
+
class ImageRequest(BaseModel):
|
| 33 |
+
prompt: str
|
| 34 |
+
model_name: str
|
| 35 |
+
num_inference_steps: int = 20
|
| 36 |
+
|
| 37 |
+
class VideoRequest(BaseModel):
|
| 38 |
+
prompt: str
|
| 39 |
+
model_name: str
|
| 40 |
+
num_frames: int = 16
|
| 41 |
+
num_inference_steps: int = 20
|
| 42 |
+
|
| 43 |
+
class ChatRequest(BaseModel):
|
| 44 |
+
message: str
|
| 45 |
+
history: list
|
| 46 |
+
model_name: str
|
| 47 |
+
|
| 48 |
# Configuraci贸n de modelos libres
|
| 49 |
MODELS = {
|
| 50 |
"text": {
|
|
|
|
| 583 |
|
| 584 |
# Configuraci贸n para Hugging Face Spaces
|
| 585 |
if __name__ == "__main__":
|
| 586 |
+
# Crear la aplicaci贸n FastAPI
|
| 587 |
+
app = FastAPI(title="NTIA Space API")
|
| 588 |
+
|
| 589 |
+
# Configurar CORS
|
| 590 |
+
app.add_middleware(
|
| 591 |
+
CORSMiddleware,
|
| 592 |
+
allow_origins=["*"],
|
| 593 |
+
allow_credentials=True,
|
| 594 |
+
allow_methods=["*"],
|
| 595 |
+
allow_headers=["*"],
|
| 596 |
)
|
| 597 |
+
|
| 598 |
+
# Endpoints API
|
| 599 |
+
@app.get("/models")
|
| 600 |
+
async def api_models():
|
| 601 |
+
try:
|
| 602 |
+
return {
|
| 603 |
+
"text": [{"id": k, "label": v} for k, v in MODELS["text"].items()],
|
| 604 |
+
"image": [{"id": k, "label": v} for k, v in MODELS["image"].items()],
|
| 605 |
+
"video": [{"id": k, "label": v} for k, v in MODELS["video"].items()],
|
| 606 |
+
"chat": [{"id": k, "label": v} for k, v in MODELS["chat"].items()]
|
| 607 |
+
}
|
| 608 |
+
except Exception as e:
|
| 609 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 610 |
|
| 611 |
+
@app.post("/generate_text")
|
| 612 |
+
async def api_generate_text(request: TextRequest):
|
| 613 |
+
try:
|
| 614 |
+
result = generate_text(request.prompt, request.model_name, request.max_length)
|
| 615 |
+
return {"response": result}
|
| 616 |
+
except Exception as e:
|
| 617 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 618 |
|
| 619 |
+
@app.post("/generate_image")
|
| 620 |
+
async def api_generate_image(request: ImageRequest):
|
| 621 |
+
try:
|
| 622 |
+
result = generate_image(request.prompt, request.model_name, request.num_inference_steps)
|
| 623 |
+
|
| 624 |
+
if isinstance(result, str) and result.startswith("Error"):
|
| 625 |
+
raise HTTPException(status_code=500, detail=result)
|
| 626 |
+
|
| 627 |
+
# Convertir PIL Image a base64
|
| 628 |
+
buffer = BytesIO()
|
| 629 |
+
result.save(buffer, format="PNG")
|
| 630 |
+
img_str = base64.b64encode(buffer.getvalue()).decode()
|
| 631 |
+
|
| 632 |
+
return {"image": f"data:image/png;base64,{img_str}"}
|
| 633 |
+
except Exception as e:
|
| 634 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 635 |
|
| 636 |
+
@app.post("/generate_video")
|
| 637 |
+
async def api_generate_video(request: VideoRequest):
|
| 638 |
+
try:
|
| 639 |
+
result = generate_video(request.prompt, request.model_name, request.num_frames, request.num_inference_steps)
|
| 640 |
+
|
| 641 |
+
if isinstance(result, str) and result.startswith("Error"):
|
| 642 |
+
raise HTTPException(status_code=500, detail=result)
|
| 643 |
+
|
| 644 |
+
return {"video": "video_data_placeholder", "frames": len(result) if isinstance(result, list) else 0}
|
| 645 |
+
except Exception as e:
|
| 646 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 647 |
|
| 648 |
+
@app.post("/chat")
|
| 649 |
+
async def api_chat(request: ChatRequest):
|
| 650 |
+
try:
|
| 651 |
+
result = chat_with_model(request.message, request.history, request.model_name)
|
| 652 |
+
return {"response": result[-1]["content"] if result else "No response"}
|
| 653 |
+
except Exception as e:
|
| 654 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 655 |
+
|
| 656 |
+
# Montar Gradio en FastAPI
|
| 657 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
| 658 |
+
|
| 659 |
+
# Lanzar con uvicorn
|
| 660 |
+
import uvicorn
|
| 661 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|