ntia / app.py
Ntdeseb's picture
Actualizando con modelos IA personalizados
e0c4be3
raw
history blame
9.22 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from diffusers import StableDiffusionPipeline, DiffusionPipeline
import requests
from PIL import Image
import io
import base64
# Configuraci贸n de modelos libres
MODELS = {
"text": {
"microsoft/DialoGPT-medium": "Chat conversacional",
"gpt2": "Generaci贸n de texto",
"distilgpt2": "GPT-2 optimizado",
"EleutherAI/gpt-neo-125M": "GPT-Neo peque帽o"
},
"image": {
"runwayml/stable-diffusion-v1-5": "Stable Diffusion v1.5",
"CompVis/stable-diffusion-v1-4": "Stable Diffusion v1.4"
}
}
# Cache para los modelos
model_cache = {}
def load_text_model(model_name):
"""Cargar modelo de texto"""
if model_name not in model_cache:
print(f"Cargando modelo de texto: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Configurar para chat si es DialoGPT
if "dialogpt" in model_name.lower():
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
model_cache[model_name] = {
"tokenizer": tokenizer,
"model": model,
"type": "text"
}
return model_cache[model_name]
def load_image_model(model_name):
"""Cargar modelo de imagen"""
if model_name not in model_cache:
print(f"Cargando modelo de imagen: {model_name}")
pipe = StableDiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
model_cache[model_name] = {
"pipeline": pipe,
"type": "image"
}
return model_cache[model_name]
def generate_text(prompt, model_name, max_length=100):
"""Generar texto con el modelo seleccionado"""
try:
model_data = load_text_model(model_name)
tokenizer = model_data["tokenizer"]
model = model_data["model"]
# Preparar input
inputs = tokenizer.encode(prompt, return_tensors="pt")
# Generar
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=max_length,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decodificar respuesta
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Para DialoGPT, extraer solo la respuesta del asistente
if "dialogpt" in model_name.lower():
response = response.replace(prompt, "").strip()
return response
except Exception as e:
return f"Error generando texto: {str(e)}"
def generate_image(prompt, model_name, num_inference_steps=20):
"""Generar imagen con el modelo seleccionado"""
try:
model_data = load_image_model(model_name)
pipeline = model_data["pipeline"]
# Generar imagen
image = pipeline(
prompt,
num_inference_steps=num_inference_steps,
guidance_scale=7.5
).images[0]
return image
except Exception as e:
return f"Error generando imagen: {str(e)}"
def chat_with_model(message, history, model_name):
"""Funci贸n de chat para DialoGPT"""
try:
model_data = load_text_model(model_name)
tokenizer = model_data["tokenizer"]
model = model_data["model"]
# Construir historial de conversaci贸n
conversation = ""
for user_msg, bot_msg in history:
conversation += f"User: {user_msg}\n"
if bot_msg:
conversation += f"Assistant: {bot_msg}\n"
conversation += f"User: {message}\nAssistant:"
# Generar respuesta
inputs = tokenizer.encode(conversation, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=inputs.shape[1] + 50,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extraer solo la respuesta del asistente
response = response.split("Assistant:")[-1].strip()
return response
except Exception as e:
return f"Error en el chat: {str(e)}"
# Interfaz de Gradio
with gr.Blocks(title="Modelos Libres de IA", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 馃 Modelos Libres de IA")
gr.Markdown("### Genera texto e im谩genes sin l铆mites de cuota")
with gr.Tabs():
# Tab de Generaci贸n de Texto
with gr.TabItem("馃摑 Generaci贸n de Texto"):
with gr.Row():
with gr.Column():
text_model = gr.Dropdown(
choices=list(MODELS["text"].keys()),
value="microsoft/DialoGPT-medium",
label="Modelo de Texto"
)
text_prompt = gr.Textbox(
label="Prompt",
placeholder="Escribe tu prompt aqu铆...",
lines=3
)
max_length = gr.Slider(
minimum=50,
maximum=200,
value=100,
step=10,
label="Longitud m谩xima"
)
text_btn = gr.Button("Generar Texto", variant="primary")
with gr.Column():
text_output = gr.Textbox(
label="Resultado",
lines=10,
interactive=False
)
text_btn.click(
generate_text,
inputs=[text_prompt, text_model, max_length],
outputs=text_output
)
# Tab de Chat
with gr.TabItem("馃挰 Chat"):
with gr.Row():
with gr.Column():
chat_model = gr.Dropdown(
choices=["microsoft/DialoGPT-medium"],
value="microsoft/DialoGPT-medium",
label="Modelo de Chat"
)
with gr.Column():
chatbot = gr.Chatbot(
label="Chat",
height=400
)
chat_input = gr.Textbox(
label="Mensaje",
placeholder="Escribe tu mensaje...",
lines=2
)
chat_btn = gr.Button("Enviar", variant="primary")
chat_btn.click(
chat_with_model,
inputs=[chat_input, chatbot, chat_model],
outputs=[chatbot],
clear_input=True
)
chat_input.submit(
chat_with_model,
inputs=[chat_input, chatbot, chat_model],
outputs=[chatbot],
clear_input=True
)
# Tab de Generaci贸n de Im谩genes
with gr.TabItem("馃帹 Generaci贸n de Im谩genes"):
with gr.Row():
with gr.Column():
image_model = gr.Dropdown(
choices=list(MODELS["image"].keys()),
value="runwayml/stable-diffusion-v1-5",
label="Modelo de Imagen"
)
image_prompt = gr.Textbox(
label="Prompt de Imagen",
placeholder="Describe la imagen que quieres generar...",
lines=3
)
steps = gr.Slider(
minimum=10,
maximum=50,
value=20,
step=5,
label="Pasos de inferencia"
)
image_btn = gr.Button("Generar Imagen", variant="primary")
with gr.Column():
image_output = gr.Image(
label="Imagen Generada",
type="pil"
)
image_btn.click(
generate_image,
inputs=[image_prompt, image_model, steps],
outputs=image_output
)
# Configuraci贸n para Hugging Face Spaces
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)