import gradio as gr from fastai.vision.all import * from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests learn_inf = load_learner("export.pkl") processor = AutoImageProcessor.from_pretrained("dima806/facial_emotions_image_detection") model = AutoModelForImageClassification.from_pretrained("dima806/facial_emotions_image_detection") def predict(value) -> str: image = Image.fromarray(value).convert("L").convert("RGB") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() return model.config.id2label[predicted_class_idx] with gr.Blocks() as demo: with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input", sources="webcam") with gr.Column(): output_lbl = gr.Label(value="Output", label="Expression Prediction") input_img.stream(fn=predict, inputs=input_img, outputs=output_lbl,concurrency_limit=20,time_limit=20,stream_every=0.1) if __name__ == "__main__": demo.launch()