File size: 1,127 Bytes
16cf1ad af3e0f6 4fb5c0d 2a29d13 4fb5c0d 2a29d13 e34b118 4fb5c0d af3e0f6 851ec4b b34bbc3 266102b 4fb5c0d 16cf1ad 39d5445 5e473a8 39d5445 e10e9b7 bd27897 16cf1ad 39d5445 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
from fastai.vision.all import *
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import requests
learn_inf = load_learner("export.pkl")
processor = AutoImageProcessor.from_pretrained("dima806/facial_emotions_image_detection")
model = AutoModelForImageClassification.from_pretrained("dima806/facial_emotions_image_detection")
def predict(value) -> str:
image = Image.fromarray(value).convert("L").convert("RGB")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
return model.config.id2label[predicted_class_idx]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input", sources="webcam")
with gr.Column():
output_lbl = gr.Label(value="Output", label="Expression Prediction")
input_img.stream(fn=predict, inputs=input_img, outputs=output_lbl,concurrency_limit=20,time_limit=20,stream_every=0.1)
if __name__ == "__main__":
demo.launch() |