AIP / app.py
NoorIlyas's picture
Create app.py
fc9bb15
import streamlit as st
import torch
from torchvision import models, transforms
from PIL import Image
# Load a pre-trained ResNet model
model = models.resnet50(pretrained=True)
model.eval()
# Define the transformations for the input image
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
def classify_image(image):
# Preprocess the input image
image = transform(image)
image = image.unsqueeze(0) # Add batch dimension
# Make a prediction
with torch.no_grad():
output = model(image)
# Get the predicted class
_, predicted_class = torch.max(output, 1)
return predicted_class.item()
def main():
st.title("Image Classification with PyTorch and Streamlit")
uploaded_file = st.file_uploader("Choose a file", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image.", use_column_width=True)
# Make a prediction
class_idx = classify_image(image)
# Display the result
class_label = str(class_idx)
st.write("Class Prediction: ", class_label)
if __name__ == "__main__":
main()