Nonnormalizable commited on
Commit
e680bbf
·
1 Parent(s): e205a84

Back to bert mini for leaderboard submission

Browse files
Files changed (2) hide show
  1. Finetune BERT.ipynb +44 -8
  2. tasks/text.py +1 -2
Finetune BERT.ipynb CHANGED
@@ -10,15 +10,15 @@
10
  },
11
  {
12
  "cell_type": "code",
13
- "execution_count": 1,
14
  "id": "73e72549-69f2-46b5-b0f5-655777139972",
15
  "metadata": {
16
  "execution": {
17
- "iopub.execute_input": "2025-01-24T18:21:58.280871Z",
18
- "iopub.status.busy": "2025-01-24T18:21:58.280785Z",
19
- "iopub.status.idle": "2025-01-24T18:22:01.627392Z",
20
- "shell.execute_reply": "2025-01-24T18:22:01.627134Z",
21
- "shell.execute_reply.started": "2025-01-24T18:21:58.280861Z"
22
  }
23
  },
24
  "outputs": [],
@@ -36,7 +36,8 @@
36
  " EvalResult,\n",
37
  ")\n",
38
  "from datasets import DatasetDict, load_dataset\n",
39
- "from torch.utils.data import Dataset, DataLoader"
 
40
  ]
41
  },
42
  {
@@ -478,7 +479,42 @@
478
  "acc 0.645, energy 0.273 Wh\n",
479
  "\n",
480
  "bert-base\\\n",
481
- "acc, energy"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
482
  ]
483
  },
484
  {
 
10
  },
11
  {
12
  "cell_type": "code",
13
+ "execution_count": 17,
14
  "id": "73e72549-69f2-46b5-b0f5-655777139972",
15
  "metadata": {
16
  "execution": {
17
+ "iopub.execute_input": "2025-01-24T18:59:00.459773Z",
18
+ "iopub.status.busy": "2025-01-24T18:59:00.458472Z",
19
+ "iopub.status.idle": "2025-01-24T18:59:00.517418Z",
20
+ "shell.execute_reply": "2025-01-24T18:59:00.517026Z",
21
+ "shell.execute_reply.started": "2025-01-24T18:59:00.459726Z"
22
  }
23
  },
24
  "outputs": [],
 
36
  " EvalResult,\n",
37
  ")\n",
38
  "from datasets import DatasetDict, load_dataset\n",
39
+ "from torch.utils.data import Dataset, DataLoader\n",
40
+ "from statsmodels.stats.proportion import proportion_confint"
41
  ]
42
  },
43
  {
 
479
  "acc 0.645, energy 0.273 Wh\n",
480
  "\n",
481
  "bert-base\\\n",
482
+ "acc 0.691, energy 1.053 Wh"
483
+ ]
484
+ },
485
+ {
486
+ "cell_type": "code",
487
+ "execution_count": 23,
488
+ "id": "6c35f222-79d9-4166-8601-8a6240a49c91",
489
+ "metadata": {
490
+ "execution": {
491
+ "iopub.execute_input": "2025-01-24T19:03:41.276772Z",
492
+ "iopub.status.busy": "2025-01-24T19:03:41.276125Z",
493
+ "iopub.status.idle": "2025-01-24T19:03:41.284530Z",
494
+ "shell.execute_reply": "2025-01-24T19:03:41.283079Z",
495
+ "shell.execute_reply.started": "2025-01-24T19:03:41.276731Z"
496
+ }
497
+ },
498
+ "outputs": [
499
+ {
500
+ "data": {
501
+ "text/plain": [
502
+ "(0.6284344081642794, 0.6817389605903139)"
503
+ ]
504
+ },
505
+ "execution_count": 23,
506
+ "metadata": {},
507
+ "output_type": "execute_result"
508
+ }
509
+ ],
510
+ "source": [
511
+ "nobs = 1219\n",
512
+ "acc = 0.656\n",
513
+ "proportion_confint(\n",
514
+ " count=int(nobs * acc),\n",
515
+ " nobs=nobs,\n",
516
+ " method=\"jeffreys\",\n",
517
+ ")"
518
  ]
519
  },
520
  {
tasks/text.py CHANGED
@@ -13,7 +13,7 @@ from .utils.emissions import tracker, clean_emissions_data, get_space_info
13
 
14
  router = APIRouter()
15
 
16
- MODEL_TYPE = "bert-base"
17
  DESCRIPTIONS = {
18
  "baseline": "baseline most common class",
19
  "bert-base": "bert base fine tuned on just training data, Nvidia T4 small",
@@ -77,7 +77,6 @@ def bert_model(test_dataset: dict, model_type: str):
77
  print("Starting model run.")
78
  predictions = np.array([])
79
  for batch in dataloader:
80
- print(" Running a batch.")
81
  test_input_ids = batch["input_ids"].to(device)
82
  test_attention_mask = batch["attention_mask"].to(device)
83
  outputs = model(test_input_ids, test_attention_mask)
 
13
 
14
  router = APIRouter()
15
 
16
+ MODEL_TYPE = "bert-mini"
17
  DESCRIPTIONS = {
18
  "baseline": "baseline most common class",
19
  "bert-base": "bert base fine tuned on just training data, Nvidia T4 small",
 
77
  print("Starting model run.")
78
  predictions = np.array([])
79
  for batch in dataloader:
 
80
  test_input_ids = batch["input_ids"].to(device)
81
  test_attention_mask = batch["attention_mask"].to(device)
82
  outputs = model(test_input_ids, test_attention_mask)