Nonnormalizable's picture
Analysis notebook
effa9d0
import random
from datetime import datetime
import numpy as np
import torch
from datasets import load_dataset
from fastapi import APIRouter, Query
from sklearn.metrics import accuracy_score
from torch.utils.data import DataLoader, Dataset
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer
from .utils.emissions import clean_emissions_data, get_space_info, tracker
from .utils.evaluation import TextEvaluationRequest
router = APIRouter()
MODEL_TYPE = "bert-mini"
DESCRIPTIONS = {
"baseline": "baseline most common class",
"bert-base": "bert base fine tuned on just training data, Nvidia T4 small",
"bert-medium": "bert medium fine tuned on just training data, Nvidia T4 small",
"bert-small": "bert small fine tuned on just training data, Nvidia T4 small",
"bert-mini": "bert mini fine tuned on just training data, Nvidia T4 small",
"bert-tiny": "bert tiny fine tuned on just training data, Nvidia T4 small",
}
ROUTE = "/text"
class TextDataset(Dataset):
def __init__(self, texts, tokenizer, max_length=256):
self.texts = texts
self.encodings = tokenizer(
texts,
truncation=True,
padding=True,
max_length=max_length,
return_tensors="pt",
)
def __getitem__(self, idx):
item = {key: val[idx] for key, val in self.encodings.items()}
return item
def __len__(self) -> int:
return len(self.texts)
def baseline_model(dataset_length: int):
# Make random predictions (placeholder for actual model inference)
# predictions = [random.randint(0, 7) for _ in range(dataset_length)]
# My favorite baseline is the most common class.
predictions = [0] * dataset_length
return predictions
def bert_model(test_dataset: dict, model_type: str):
print("Starting my code block.")
texts = test_dataset["quote"]
model_repo = f"Nonnormalizable/frugal-ai-text-{model_type}"
print(f"Loading from model_repo: {model_repo}")
config = AutoConfig.from_pretrained(model_repo)
model = AutoModelForSequenceClassification.from_pretrained(model_repo)
tokenizer = AutoTokenizer.from_pretrained(model_repo)
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
print("Using device:", device)
model = model.to(device)
dataset = TextDataset(texts, tokenizer=tokenizer)
dataloader = DataLoader(dataset, batch_size=32, shuffle=False)
model.eval()
with torch.no_grad():
print("Starting model run.")
predictions = np.array([])
for batch in dataloader:
test_input_ids = batch["input_ids"].to(device)
test_attention_mask = batch["attention_mask"].to(device)
outputs = model(test_input_ids, test_attention_mask)
p = torch.argmax(outputs.logits, dim=1)
predictions = np.append(predictions, p.cpu().numpy())
print("End of model run.")
print("End of my code block.")
return predictions
@router.post(ROUTE, tags=["Text Task"])
async def evaluate_text(
request: TextEvaluationRequest,
model_type: str = MODEL_TYPE,
# This should be an API query parameter, but it looks like the submission repo
# https://huggingface.co/spaces/frugal-ai-challenge/submission-portal
# is built in a way to not accept any other endpoints or parameters.
):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7,
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(
test_size=request.test_size, seed=request.test_seed
)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
# --------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
# --------------------------------------------------------------------------------------------
true_labels = test_dataset["label"]
if model_type == "baseline":
predictions = baseline_model(len(true_labels))
elif model_type[:5] == "bert-":
predictions = bert_model(test_dataset, model_type)
else:
raise ValueError(model_type)
# --------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
# --------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTIONS[model_type],
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed,
},
}
return results