|
|
|
|
|
import torch |
|
import itertools |
|
import torch.nn as nn |
|
from torch.autograd import Function, Variable |
|
|
|
class TPSGridGen(nn.Module): |
|
|
|
def __init__(self, target_height, target_width, target_control_points): |
|
super(TPSGridGen, self).__init__() |
|
assert target_control_points.ndimension() == 2 |
|
assert target_control_points.size(1) == 2 |
|
N = target_control_points.size(0) |
|
self.num_points = N |
|
target_control_points = target_control_points.float() |
|
|
|
|
|
forward_kernel = torch.zeros(N + 3, N + 3) |
|
target_control_partial_repr = self.compute_partial_repr(target_control_points, target_control_points) |
|
forward_kernel[:N, :N].copy_(target_control_partial_repr) |
|
forward_kernel[:N, -3].fill_(1) |
|
forward_kernel[-3, :N].fill_(1) |
|
forward_kernel[:N, -2:].copy_(target_control_points) |
|
forward_kernel[-2:, :N].copy_(target_control_points.transpose(0, 1)) |
|
|
|
inverse_kernel = torch.inverse(forward_kernel) |
|
|
|
|
|
HW = target_height * target_width |
|
target_coordinate = list(itertools.product(range(target_height), range(target_width))) |
|
target_coordinate = torch.Tensor(target_coordinate) |
|
Y, X = target_coordinate.split(1, dim = 1) |
|
Y = Y * 2 / (target_height - 1) - 1 |
|
X = X * 2 / (target_width - 1) - 1 |
|
target_coordinate = torch.cat([X, Y], dim = 1) |
|
target_coordinate_partial_repr = self.compute_partial_repr(target_coordinate, target_control_points) |
|
target_coordinate_repr = torch.cat([ |
|
target_coordinate_partial_repr, torch.ones(HW, 1), target_coordinate |
|
], dim = 1) |
|
|
|
|
|
self.register_buffer('inverse_kernel', inverse_kernel) |
|
self.register_buffer('padding_matrix', torch.zeros(3, 2)) |
|
self.register_buffer('target_coordinate_repr', target_coordinate_repr) |
|
|
|
def forward(self, source_control_points): |
|
assert source_control_points.ndimension() == 3 |
|
assert source_control_points.size(1) == self.num_points |
|
assert source_control_points.size(2) == 2 |
|
batch_size = source_control_points.size(0) |
|
|
|
Y = torch.cat([source_control_points, Variable(self.padding_matrix.expand(batch_size, 3, 2))], 1) |
|
mapping_matrix = torch.matmul(Variable(self.inverse_kernel), Y) |
|
source_coordinate = torch.matmul(Variable(self.target_coordinate_repr), mapping_matrix) |
|
return source_coordinate |
|
|
|
def compute_partial_repr(self, input_points, control_points): |
|
N = input_points.size(0) |
|
M = control_points.size(0) |
|
pairwise_diff = input_points.view(N, 1, 2) - control_points.view(1, M, 2) |
|
|
|
|
|
pairwise_diff_square = pairwise_diff * pairwise_diff |
|
pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :, 1] |
|
repr_matrix = 0.5 * pairwise_dist * torch.log(pairwise_dist) |
|
|
|
mask = repr_matrix != repr_matrix |
|
repr_matrix.masked_fill_(mask, 0) |
|
return repr_matrix |