CLAPSep / model /CLAPSep_decoder.py
AisakaMikoto's picture
Upload 7 files
fbe31d2 verified
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
@Project :Waveformer-main
@File :CLAPsep_decoder.py
@IDE :PyCharm
@Author :Aisaka/Hao Ma @SDU
@Date :2023/10/31 下午8:34
'''
from laion_clap.clap_module.htsat import *
from einops import rearrange
import numpy as np
class Transpose(nn.Module):
def __init__(self, dim0, dim1):
super(Transpose, self).__init__()
self.dim0 = dim0
self.dim1 = dim1
def forward(self, x):
return x.transpose(self.dim0, self.dim1)
class Swish(nn.Module):
def __init__(self):
super(Swish, self).__init__()
def forward(self, x):
return x * x.sigmoid()
class Glu(nn.Module):
def __init__(self, dim):
super(Glu, self).__init__()
self.dim = dim
def forward(self, x):
x_in, x_gate = x.chunk(2, dim=self.dim)
return x_in * x_gate.sigmoid()
class FiLM(nn.Module):
def __init__(self, dim_in=1024, hidden_dim=768):
super(FiLM, self).__init__()
self.beta = nn.Linear(dim_in, hidden_dim)
self.gamma = nn.Linear(dim_in, hidden_dim)
def forward(self, hidden_state, embed):
embed = embed.unsqueeze(1)
return self.gamma(embed) * hidden_state + self.beta(embed)
class SkipTrans(nn.Module):
def __init__(self, in_features, out_features, embed_dim=512, film=True):
super(SkipTrans, self).__init__()
self.film = film
if film:
self.skip_conv = FiLM(embed_dim, out_features)
self.feature_proj = nn.Linear(in_features, out_features)
self.norm = nn.LayerNorm(out_features)
def forward(self, skip, embed, x=None):
out = self.feature_proj(skip)
if self.film:
out = self.skip_conv(out, embed)
return self.norm(out) if x is None else self.norm(out + x)
class Conv1d(nn.Conv1d):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride = 1,
padding = "same",
dilation = 1,
groups = 1,
bias = True
):
super(Conv1d, self).__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=0,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode="zeros")
# Assert
assert padding in ["valid", "same", "causal"]
# Padding
if padding == "valid":
self.pre_padding = None
elif padding == "same":
self.pre_padding = nn.ConstantPad1d(padding=((kernel_size - 1) // 2, (kernel_size - 1) // 2), value=0)
elif padding == "causal":
self.pre_padding = nn.ConstantPad1d(padding=(kernel_size - 1, 0), value=0)
# Variational Noise
self.noise = None
self.vn_std = None
def init_vn(self, vn_std):
# Variational Noise
self.vn_std = vn_std
def sample_synaptic_noise(self, distributed):
# Sample Noise
self.noise = torch.normal(mean=0.0, std=1.0, size=self.weight.size(), device=self.weight.device, dtype=self.weight.dtype)
# Broadcast Noise
if distributed:
torch.distributed.broadcast(self.noise, 0)
def forward(self, input):
# Weight
weight = self.weight
# Add Noise
if self.noise is not None and self.training:
weight = weight + self.vn_std * self.noise
# Padding
if self.pre_padding is not None:
input = self.pre_padding(input)
# Apply Weight
return F.conv1d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
class ConvolutionModule(nn.Module):
"""Conformer Convolution Module
Args:
dim_model: input feature dimension
dim_expand: output feature dimension
kernel_size: 1D depthwise convolution kernel size
Pdrop: residual dropout probability
stride: 1D depthwise convolution stride
padding: "valid", "same" or "causal"
Input: (batch size, input length, dim_model)
Output: (batch size, output length, dim_expand)
"""
def __init__(self, dim_model, dim_expand, kernel_size, Pdrop, stride, padding):
super(ConvolutionModule, self).__init__()
# Layers
self.layers = nn.Sequential(
nn.LayerNorm(dim_model, eps=1e-6),
Transpose(1, 2),
Conv1d(dim_model, 2 * dim_expand, kernel_size=1),
Glu(dim=1),
Conv1d(dim_expand, dim_expand, kernel_size, stride=stride, padding=padding, groups=dim_expand),
nn.BatchNorm1d(dim_expand),
Swish(),
Conv1d(dim_expand, dim_expand, kernel_size=1),
Transpose(1, 2),
nn.Dropout(p=Pdrop)
)
self.ln = nn.LayerNorm(dim_expand)
def forward(self, x):
return self.ln(self.layers(x)+x)
class BasicLayerDec(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
norm_before_mlp='ln'):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
num_heads=num_heads, window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop, attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer, norm_before_mlp=norm_before_mlp)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample((input_resolution[0]//2, input_resolution[1]//2), dim=dim * 2, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x):
attns = []
if self.downsample is not None:
x = self.downsample(x)
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x, attn = blk(x)
if not self.training:
attns.append(attn.unsqueeze(0))
if not self.training:
attn = torch.cat(attns, dim = 0)
attn = torch.mean(attn, dim = 0)
return x, attn
def extra_repr(self):
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
class PatchExpand(nn.Module):
def __init__(self, input_resolution, dim, dim_scale=2, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.expand = nn.Linear(dim, 2 * dim, bias=False) if dim_scale == 2 else nn.Identity()
self.norm = norm_layer(dim // dim_scale)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
x = self.expand(x)
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
x = x.view(B, H, W, C)
# This is the original implementation in SwinUnet
# x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=2, p2=2, c=C // 4)
# here is our implementation
# can reverse patch-emerging in Swin-Transformer encoder, seems helpful
x0, x2, x1, x3 = x.chunk(4, dim=-1)
x = torch.stack((x0, x1, x2, x3), dim=-1)
x = torch.chunk(x, C // 4, dim=-2)
x = torch.concat(x, dim=-1).squeeze(-2)
x = rearrange(x, 'b h w c -> b c h w')
x = torch.nn.functional.pixel_shuffle(x, 2)
x = rearrange(x, 'b c h w -> b h w c')
x = x.view(B, -1, C // 4)
x = self.norm(x)
return x
class InversePatchEmbed(nn.Module):
"""
Patch Embedding to 2D Image.
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True,
patch_stride=16):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patch_stride = to_2tuple(patch_stride)
self.img_size = img_size
self.patch_size = patch_size
self.patch_stride = patch_stride
self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = flatten
self.in_chans = in_chans
self.embed_dim = embed_dim
padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2)
self.proj = nn.ConvTranspose2d(embed_dim, in_chans, kernel_size=patch_size, stride=patch_stride, padding=padding)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
# B, C, H, W = x.shape
# assert H == self.img_size[0] and W == self.img_size[1], \
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.norm(x)
if self.flatten:
# x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
x = x.transpose(1, 2).unflatten(2, self.grid_size).contiguous() # BNC -> BCHW
x = self.proj(x)
return x
class HTSAT_Decoder(nn.Module):
r"""HTSAT_decoder based on the Swin Transformer
Args:
spec_size (int | tuple(int)): Input Spectrogram size. Default 256
patch_size (int | tuple(int)): Patch size. Default: 4
path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4
in_chans (int): Number of input image channels. Default: 1 (mono)
num_classes (int): Number of classes for classification head. Default: 527
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (int): Window size. Default: 8
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
"""
def __init__(self, lan_embed_dim=512, spec_size=256, patch_size=4, patch_stride=(4, 4),
in_chans=1, num_classes=527,
embed_dim=48, depths=[1, 1, 1, 1], num_heads=[4, 8, 16, 32],
window_size=8, mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
ape=False, patch_norm=True,
use_checkpoint=False, norm_before_mlp='ln', encoder_embed_dim=96, phase=False,
spec_factor=8, d_attn=640, n_masker_layer=4, conv=False):
super(HTSAT_Decoder, self).__init__()
self.mel_bins = 64
self.spec_size = spec_size
self.phase = phase
self.patch_stride = patch_stride
self.patch_size = patch_size
self.window_size = window_size
self.embed_dim = embed_dim
self.depths = depths
self.ape = ape
self.in_chans = in_chans
self.num_classes = num_classes
self.num_heads = num_heads
self.num_layers = len(self.depths)
self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1))
self.drop_rate = drop_rate
self.attn_drop_rate = attn_drop_rate
self.drop_path_rate = drop_path_rate
self.qkv_bias = qkv_bias
self.qk_scale = None
self.patch_norm = patch_norm
self.norm_layer = norm_layer if self.patch_norm else None
self.norm_before_mlp = norm_before_mlp
self.mlp_ratio = mlp_ratio
self.use_checkpoint = use_checkpoint
# process mel-spec ; used only once
self.freq_ratio = self.spec_size // self.mel_bins
# split spctrogram into non-overlapping patches
self.inverse_patch_embed = InversePatchEmbed(
img_size=self.spec_size, patch_size=self.patch_size, in_chans=self.in_chans,
embed_dim=self.embed_dim, norm_layer=self.norm_layer, patch_stride=patch_stride)
patches_resolution = self.inverse_patch_embed.grid_size
self.patches_resolution = patches_resolution
# stochastic depth
dpr = [x.item() for x in
torch.linspace(0, self.drop_path_rate, sum(self.depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
self.skip = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayerDec(dim=int(self.embed_dim * 2 ** i_layer),
input_resolution=(patches_resolution[0] // (2 ** i_layer),
patches_resolution[1] // (2 ** i_layer)),
depth=self.depths[i_layer],
num_heads=self.num_heads[i_layer],
window_size=self.window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
drop=self.drop_rate, attn_drop=self.attn_drop_rate,
drop_path=dpr[sum(self.depths[:i_layer]):sum(self.depths[:i_layer + 1])],
norm_layer=self.norm_layer,
downsample=PatchExpand if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
norm_before_mlp=self.norm_before_mlp)
self.layers.append(layer)
self.skip.append(
SkipTrans(embed_dim=lan_embed_dim, in_features=int(encoder_embed_dim * 2 ** i_layer), out_features=int(self.embed_dim * 2 ** i_layer)),
)
self.layers = self.layers[::-1]
self.skip = self.skip[::-1]
# self.skip.append(
# SkipTrans(embed_dim=lan_embed_dim, in_features=self.mel_bins, out_features=self.mel_bins),
# )
d_spec = self.mel_bins * spec_factor + 1
self.spec_norm = nn.BatchNorm2d(d_spec, momentum=0.01)
self.conv = conv
if not conv:
encoder_layer = nn.TransformerEncoderLayer(d_model=d_attn, nhead=8,
dim_feedforward=int(d_attn * self.mlp_ratio),
batch_first=True, dropout=0)
transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=n_masker_layer)
self.mask_net = nn.Sequential(
nn.Linear(self.mel_bins + d_spec, d_attn),
nn.LayerNorm(d_attn),
transformer_encoder,
nn.Linear(d_attn, d_spec)
)
else:
self.mask_net = nn.Sequential(
nn.Linear(self.mel_bins + d_spec, d_spec),
nn.LayerNorm(d_spec),
*[ConvolutionModule(dim_model=d_spec, dim_expand=d_spec, kernel_size=9, padding='same',
Pdrop=0, stride=1) for i in range(n_masker_layer)]
)
if self.phase:
self.phase_net = nn.Sequential(
nn.Linear(self.mel_bins + d_spec, d_spec * 2),
nn.LayerNorm(d_spec * 2),
*[ConvolutionModule(dim_model=d_spec * 2, dim_expand=d_spec * 2, kernel_size=9, padding='same',
Pdrop=0, stride=1) for i in range(n_masker_layer)]
)
self.film = SkipTrans(embed_dim=lan_embed_dim, in_features=encoder_embed_dim * 8, out_features=self.num_features)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
# @torch.jit.ignore
# def no_weight_decay(self):
# return {'absolute_pos_embed'}
#
# @torch.jit.ignore
# def no_weight_decay_keywords(self):
# return {'relative_position_bias_table'}
def forward(self, hidden_state, skip_features, embed):
skip_features = skip_features[::-1]
# hidden_state = torch.randn(hidden_state.shape).type_as(hidden_state)
spec = skip_features[-1]
h = self.film(hidden_state, embed)
for i, (layer, f, skip) in enumerate(zip(self.layers, skip_features, self.skip)):
h = layer(h)[0]
h = skip(skip=f, embed=embed, x=h)
h = self.reshape_img2wav(self.inverse_patch_embed(h)).squeeze(1)
h = h[:, :spec.size(2), :]
spec = spec.transpose(1, 3)
spec = self.spec_norm(spec).transpose(1, 3).squeeze(1)
h = torch.concat([spec, h], dim=-1)
mask = self.mask_net(h).unsqueeze(1)
if self.phase:
mask_r, mask_i = torch.chunk(self.phase_net(h).unsqueeze(1), chunks=2, dim=-1)
return torch.sigmoid(mask), torch.tanh(mask_r), torch.tanh(mask_i)
else:
return torch.sigmoid(mask)
def reshape_img2wav(self, x):
# (B, 1, 256, 256)
x = x.reshape(x.shape[0], x.shape[1], self.freq_ratio, x.shape[2]//self.freq_ratio, x.shape[3]) # (B, 1, 4, 64, 256)
x = x.permute(0, 1, 3, 2, 4).contiguous()
x = x.reshape(x.shape[0], x.shape[1], x.shape[2], x.shape[3] * x.shape[4])
x = x.permute(0, 1, 3, 2).contiguous()
return x
# if __name__ == "__main__":
# import torch
# from msclap import CLAP
# import os
# import torchaudio
# import torchaudio.transforms as T
# import numpy as np
# import random
# from torchlibrosa import Spectrogram, LogmelFilterBank
# clap_model = CLAP(model_fp="/home/user/202212661/clapsep/Waveformer-main/checkpoint_path/CLAP_weights_2023.pth",
# version='2023', use_cuda=True)
# text_data = [
# "Acoustic_guitar", "Applause", "Bark", "Bass_drum", "Burping_or_eructation",
# "Bus", "Cello", "Chime", "Clarinet", "Computer_keyboard",
# "Cough", "Cowbell", "Double_bass", "Drawer_open_or_close", "Electric_piano",
# "Fart", "Finger_snapping", "Fireworks", "Flute", "Glockenspiel",
# "Gong", "Gunshot_or_gunfire", "Harmonica", "Hi-hat", "Keys_jangling",
# "Knock", "Laughter", "Meow", "Microwave_oven", "Oboe",
# "Saxophone", "Scissors", "Shatter", "Snare_drum", "Squeak",
# "Tambourine", "Tearing", "Telephone", "Trumpet", "Violin_or_fiddle",
# "Writing"]
# # Extract text embeddings
# text_embeddings = clap_model.get_text_embeddings(text_data)
# path = "/home/user/202212661/clapsep/Waveformer-main/data/FSDSoundScapes/FSDKaggle2018/train/Tearing/2232ce13.wav"
# # Extract audio embeddings
# audio_embeddings_ = clap_model.get_audio_embeddings([path])
#
# window = 'hann'
# center = True
# pad_mode = 'reflect'
# ref = 1.0
# amin = 1e-10
# top_db = None
#
# spectrogram_extractor = Spectrogram(n_fft=512, hop_length=160,
# win_length=512, window=window, center=center, pad_mode=pad_mode,
# freeze_parameters=True).cuda()
# # Logmel feature extractor
# logmel_extractor = LogmelFilterBank(sr=16000, n_fft=512,
# n_mels=64, fmin=0, fmax=8000, ref=ref, amin=amin,
# top_db=top_db,
# freeze_parameters=True).cuda()
#
# clap_model.clap.audio_encoder.base.htsat.spectrogram_extractor = spectrogram_extractor
# clap_model.clap.audio_encoder.base.htsat.logmel_extractor = logmel_extractor
#
# features = []
#
#
# def get_features_list(module, input, output):
# features.append(output)
#
#
# def get_features_list_basic_layer(module, input, output):
# features.append(output[0])
#
#
# clap_model.clap.audio_encoder.base.htsat.patch_embed.register_forward_hook(get_features_list)
# for module in clap_model.clap.audio_encoder.base.htsat.layers:
# module.register_forward_hook(get_features_list_basic_layer)
#
# audio_time_series, sample_rate = torchaudio.load(path)
# resample_rate = 16000
# if resample_rate != sample_rate:
# resampler = T.Resample(sample_rate, resample_rate)
# audio_time_series = resampler(audio_time_series)
#
# sample_rate = resample_rate
# audio_duration = 10
# audio_time_series = audio_time_series.reshape(-1)
# if audio_duration * sample_rate >= audio_time_series.shape[0]:
# repeat_factor = int(np.ceil((audio_duration * sample_rate) /
# audio_time_series.shape[0]))
# # Repeat audio_time_series by repeat_factor to match audio_duration
# audio_time_series = audio_time_series.repeat(repeat_factor)
# # remove excess part of audio_time_series
# audio_time_series = audio_time_series[0:audio_duration * sample_rate]
# else:
# # audio_time_series is longer than predefined audio duration,
# # so audio_time_series is trimmed
# start_index = random.randrange(
# audio_time_series.shape[0] - audio_duration * sample_rate)
# audio_time_series = audio_time_series[start_index:start_index +
# audio_duration * sample_rate]
#