lexical / app.py
NoaiGPT's picture
asd
4ff5171
raw
history blame
6.37 kB
import os
import json
import gradio as gr
import spaces
import torch
import random
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
from sentence_splitter import SentenceSplitter
from itertools import product
hf_token = os.getenv('HF_TOKEN')
cuda_available = torch.cuda.is_available()
device = torch.device("cuda" if cuda_available else "cpu")
print(f"Using device: {device}")
paraphraser_model_name = "facebook/bart-large-cnn"
paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name)
paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name).to(device)
classifier_model_name = "andreas122001/roberta-mixed-detector"
classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)
splitter = SentenceSplitter(language='en')
def classify_text(text):
inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = classifier_model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
main_label = classifier_model.config.id2label[predicted_class]
main_score = probabilities[0][predicted_class].item()
return main_label, main_score
def introduce_errors(text):
words = text.split()
if len(words) > 3:
i = random.randint(0, len(words) - 1)
words[i] = words[i].lower() if words[i][0].isupper() else words[i].capitalize()
return ' '.join(words)
@spaces.GPU
def generate_paraphrases(text, setting, output_format):
sentences = splitter.split(text)
all_sentence_paraphrases = []
if setting == 1: temperature, top_p, top_k = 0.7, 0.9, 50
elif setting == 2: temperature, top_p, top_k = 0.8, 0.85, 40
elif setting == 3: temperature, top_p, top_k = 0.9, 0.8, 30
elif setting == 4: temperature, top_p, top_k = 1.0, 0.75, 20
else: temperature, top_p, top_k = 1.1, 0.7, 10
num_return_sequences = 5
max_length = 128
formatted_output = f"Original text:\n{text}\n\nParaphrased versions:\n"
json_output = {"original_text": text, "paraphrased_versions": [], "combined_versions": [], "human_like_versions": []}
for i, sentence in enumerate(sentences):
inputs = paraphraser_tokenizer(sentence, return_tensors="pt", max_length=max_length, truncation=True).to(device)
outputs = paraphraser_model.generate(
**inputs,
do_sample=True,
max_length=max_length,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=num_return_sequences,
repetition_penalty=1.2,
no_repeat_ngram_size=2
)
paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
paraphrases = [introduce_errors(p) for p in paraphrases]
formatted_output += f"Original sentence {i+1}: {sentence}\n"
for j, paraphrase in enumerate(paraphrases, 1):
formatted_output += f" Paraphrase {j}: {paraphrase}\n"
json_output["paraphrased_versions"].append({f"original_sentence_{i+1}": sentence, "paraphrases": paraphrases})
all_sentence_paraphrases.append(paraphrases)
formatted_output += "\n"
all_combinations = list(product(*all_sentence_paraphrases))
random.shuffle(all_combinations)
formatted_output += "\nCombined paraphrased versions:\n"
combined_versions = []
for i, combination in enumerate(all_combinations[:50], 1):
combined_paraphrase = " ".join(combination)
combined_versions.append(combined_paraphrase)
json_output["combined_versions"] = combined_versions
human_versions = []
for i, version in enumerate(combined_versions, 1):
label, score = classify_text(version)
formatted_output += f"Version {i}:\n{version}\n"
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
if label == "human-produced" or (label == "machine-generated" and score < 0.9):
human_versions.append((version, label, score))
formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
for i, (version, label, score) in enumerate(human_versions, 1):
formatted_output += f"Version {i}:\n{version}\n"
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
json_output["human_like_versions"] = [{"version": v, "label": l, "confidence_score": s} for v, l, s in human_versions]
if not human_versions:
human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
formatted_output += "\nNo human-like versions found. Showing top 5 least confident machine-generated versions:\n"
for i, (version, label, score) in enumerate(human_versions, 1):
formatted_output += f"Version {i}:\n{version}\n"
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
return (formatted_output, "\n\n".join([v[0] for v in human_versions])) if output_format == "text" else (json.dumps(json_output, indent=2), "\n\n".join([v[0] for v in human_versions]))
iface = gr.Interface(
fn=generate_paraphrases,
inputs=[
gr.Textbox(lines=5, label="Input Text"),
gr.Slider(minimum=1, maximum=5, step=1, label="Diversity Setting"),
gr.Radio(["text", "json"], label="Output Format")
],
outputs=[
gr.Textbox(lines=20, label="Detailed Paraphrases and Classifications"),
gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases")
],
title="Advanced Diverse Paraphraser with Human-like Filter",
description="Enter a text, select a diversity setting, and choose the output format to generate diverse paraphrased versions. Combined versions are classified, and those detected as human-produced or less confidently machine-generated are presented in the final output."
)
iface.launch()