voice-chat-api / app.py
NitinBot001's picture
Update app.py
adf0bc5 verified
raw
history blame
6.72 kB
import os
import io
import json
import uuid
import wave
import tempfile
from datetime import datetime
from typing import Optional, Dict, Any
from pathlib import Path
from fastapi import FastAPI, File, UploadFile, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from pydantic import BaseModel
import uvicorn
import requests
import numpy as np
from groq import Groq
import dotenv
# Load environment variables
dotenv.load_dotenv()
app = FastAPI(title="Voice AI Backend")
# Mount static files
app.mount("/static", StaticFiles(directory="static"), name="static")
# CORS configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure appropriately for production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Configuration
GROQ_MODEL = "whisper-large-v3-turbo"
AI_API_ENDPOINT = "https://nitinbot001-crop-rag-api.hf.space/api/query"
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Initialize Groq client
groq_client = Groq(api_key=GROQ_API_KEY) if GROQ_API_KEY else None
# Store conversation history (in production, use a database)
conversation_history = []
class TranscriptionResponse(BaseModel):
success: bool
user_query: str
ai_response: str
metadata: Dict[str, Any]
session_id: str
timestamp: str
error: Optional[str] = None
class ConversationHistory(BaseModel):
sessions: list
@app.get("/", response_class=HTMLResponse)
async def read_root():
return FileResponse('index.html')
@app.post("/api/process-audio", response_model=TranscriptionResponse)
async def process_audio(audio: UploadFile = File(...)):
"""
Process audio file: transcribe and get AI response
"""
session_id = str(uuid.uuid4())
timestamp = datetime.now().isoformat()
try:
# Validate file type
if not audio.filename.endswith(('.wav', '.webm', '.mp3', '.m4a', '.ogg')):
raise HTTPException(status_code=400, detail="Invalid audio format")
# Read audio data
audio_data = await audio.read()
# Save temporary file for processing
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
# If it's webm (from browser), we need to save it as-is
# Groq can handle webm directly
if audio.filename.endswith('.webm'):
tmp_file.write(audio_data)
tmp_path = tmp_file.name
else:
# For wav files, write directly
tmp_file.write(audio_data)
tmp_path = tmp_file.name
# Transcribe with Groq
user_query = await transcribe_audio(tmp_path, audio.filename)
# Get AI response
ai_response = await get_ai_response(user_query)
# Create metadata
metadata = {
"audio_size": len(audio_data),
"audio_format": audio.filename.split('.')[-1],
"transcription_model": GROQ_MODEL,
"ai_endpoint": AI_API_ENDPOINT,
"processing_time": datetime.now().isoformat(),
}
# Store in history
conversation_history.append({
"session_id": session_id,
"timestamp": timestamp,
"user_query": user_query,
"ai_response": ai_response,
"metadata": metadata
})
# Clean up
os.unlink(tmp_path)
return TranscriptionResponse(
success=True,
user_query=user_query,
ai_response=ai_response,
metadata=metadata,
session_id=session_id,
timestamp=timestamp
)
except Exception as e:
return TranscriptionResponse(
success=False,
user_query="",
ai_response="",
metadata={},
session_id=session_id,
timestamp=timestamp,
error=str(e)
)
async def transcribe_audio(file_path: str, original_filename: str) -> str:
"""
Transcribe audio using Groq Whisper
"""
if not groq_client:
raise HTTPException(status_code=500, detail="GROQ_API_KEY not configured")
try:
with open(file_path, "rb") as audio_file:
transcription = groq_client.audio.transcriptions.create(
file=(original_filename, audio_file.read()),
model=GROQ_MODEL,
response_format="text"
)
# Handle different response formats
if hasattr(transcription, 'text'):
text = transcription.text
elif isinstance(transcription, dict):
text = transcription.get('text', '')
else:
text = str(transcription)
return text.strip()
except Exception as e:
raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}")
async def get_ai_response(query: str) -> str:
"""
Get response from AI API
"""
try:
headers = {"Content-Type": "application/json"}
payload = {"query": query}
response = requests.post(
AI_API_ENDPOINT,
json=payload,
headers=headers,
timeout=30
)
response.raise_for_status()
result = response.json()
# Extract text from response (adjust based on actual API response format)
if isinstance(result, dict):
# Try different possible response keys
ai_text = result.get('response',
result.get('answer',
result.get('text',
result.get('message', str(result)))))
else:
ai_text = str(result)
return ai_text
except requests.exceptions.Timeout:
return "I'm sorry, the AI service is taking too long to respond. Please try again."
except Exception as e:
return f"I encountered an error while processing your request: {str(e)}"
@app.get("/api/history", response_model=ConversationHistory)
async def get_history():
"""
Get conversation history
"""
return ConversationHistory(sessions=conversation_history[-20:]) # Last 20 conversations
@app.delete("/api/history")
async def clear_history():
"""
Clear conversation history
"""
global conversation_history
conversation_history = []
return {"message": "History cleared"}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)