Spaces:
Running
Running
File size: 6,972 Bytes
d9e62f5 75f1c1a d9e62f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
import requests
import xml.etree.ElementTree as ET
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.memory import ConversationBufferMemory
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
from loguru import logger
import numpy as np
# --- DataIngestion Class with Query Expansion ---
class DataIngestion:
def __init__(self, api_url="http://export.arxiv.org/api/query"):
self.api_url = api_url
self.synonyms = {
"RAG": "Retrieval-Augmented Generation",
"AI": "Artificial Intelligence",
"ML": "Machine Learning"
}
def expand_query(self, query):
expanded = query
for key, value in self.synonyms.items():
if key.lower() in query.lower():
expanded += f" OR {value}"
logger.info(f"Expanded query: {expanded}")
return expanded
def fetch_papers(self, topic, max_results=5):
expanded_query = self.expand_query(topic)
url = f"{self.api_url}?search_query=ti:{expanded_query}+OR+ab:{expanded_query}&start=0&max_results={max_results}"
logger.info(f"Fetching papers from: {url}")
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
except requests.exceptions.RequestException as e:
logger.error(f"Error fetching papers: {e}")
return [], [], []
root = ET.fromstring(response.text)
titles, abstracts, paper_ids = [], [], []
for entry in root.findall("{http://www.w3.org/2005/Atom}entry"):
title = entry.find("{http://www.w3.org/2005/Atom}title").text.strip()
abstract = entry.find("{http://www.w3.org/2005/Atom}summary").text.strip()
paper_id_elem = entry.find("{http://www.w3.org/2005/Atom}id")
paper_id = paper_id_elem.text.split("abs/")[-1].strip() if paper_id_elem is not None else "unknown"
titles.append(title)
abstracts.append(abstract)
paper_ids.append(paper_id)
logger.info(f"Fetched {len(abstracts)} papers.")
return titles, abstracts, paper_ids
# --- RetrievalModule Class with Reranking ---
class RetrievalModule:
def __init__(self, embedding_model="all-MiniLM-L6-v2", persist_dir="./chroma_db"):
self.embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
self.vector_store = None
self.persist_dir = persist_dir
self.reranker_model = AutoModelForSequenceClassification.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2")
self.reranker_tokenizer = AutoTokenizer.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2")
def build_vector_store(self, abstracts, titles, paper_ids):
if not abstracts:
logger.warning("No abstracts provided. Skipping vector store creation.")
return
metadatas = [{"title": title, "paper_id": pid} for title, pid in zip(titles, paper_ids)]
self.vector_store = Chroma.from_texts(
texts=abstracts, embedding=self.embeddings, metadatas=metadatas, persist_directory=self.persist_dir
)
self.vector_store.persist()
logger.info("Chroma vector store built.")
def rerank(self, query, retrieved):
if not retrieved:
return retrieved
inputs = [f"{query} [SEP] {doc[0]}" for doc in retrieved]
tokenized = self.reranker_tokenizer(inputs, return_tensors="pt", padding=True, truncation=True, max_length=512)
scores = self.reranker_model(**tokenized).logits.squeeze().detach().numpy()
ranked_indices = np.argsort(scores)[::-1]
return [retrieved[i] for i in ranked_indices[:3]]
def retrieve_relevant(self, query, k=5):
if not self.vector_store:
logger.warning("Vector store empty. Run `build_vector_store` first.")
return []
top_docs = self.vector_store.similarity_search(query, k=k)
retrieved = [(doc.page_content, doc.metadata) for doc in top_docs]
reranked = self.rerank(query, retrieved)
logger.info(f"Retrieved and reranked {len(reranked)} papers for query: '{query}'.")
return reranked
# --- Main Application Logic ---
data_ingestion = DataIngestion()
retrieval_module = RetrievalModule()
generator = pipeline("text-generation", model="distilgpt2")
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
def process_query(query):
"""Retrieve and summarize the best papers with their sources."""
try:
# Check chat history for follow-up context
history = memory.load_memory_variables({})["chat_history"]
if history and "more" in query.lower():
last_output = history[-1]["content"] if history else ""
context = "\n".join([line for line in last_output.split("\n") if "Summary" in line])
else:
# Fetch and retrieve papers for new query
titles, abstracts, paper_ids = data_ingestion.fetch_papers(query)
if not abstracts:
return "No papers found after query expansion."
retrieval_module.build_vector_store(abstracts, titles, paper_ids)
retrieved = retrieval_module.retrieve_relevant(query)
if not retrieved:
return "No relevant papers retrieved."
retrieved_abstracts = [item[0] for item in retrieved]
retrieved_metadata = [item[1] for item in retrieved]
context = "\n".join(retrieved_abstracts)
memory.save_context({"input": "Retrieved papers"}, {"output": context})
# Generate a concise summary of the best papers
prompt = f"Summarize the best research papers on {query} based on these abstracts:\n{context}"
summary = generator(prompt, max_new_tokens=100, num_return_sequences=1, truncation=True)[0]["generated_text"]
# Include sources if not a follow-up
if "more" not in query.lower():
papers_ref = "\n".join([f"- {m['title']} ([link](https://export.arxiv.org/abs/{m['paper_id']}))" for m in retrieved_metadata])
full_output = f"π **Summary of Best Papers on {query}:**\n{summary}\n\n**Sources:**\n{papers_ref}"
else:
full_output = f"π **More on {query}:**\n{summary}"
memory.save_context({"input": query}, {"output": full_output})
return full_output
except Exception as e:
logger.error(f"Error: {str(e)}")
return f"Error: {str(e)}"
# --- Gradio Interface ---
demo = gr.Interface(
fn=process_query,
inputs=gr.Textbox(label="Enter your research query (e.g., 'RAG' or 'Tell me more')"),
outputs=gr.Textbox(label="Result"),
title="AI_Research_Buddy",
description="Retrieve summaries of the best papers on your topic with their sources. Ask follow-ups like 'Tell me more.'"
)
demo.launch() |