Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
from langchain_groq import ChatGroq
|
4 |
-
from
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
7 |
from langchain_core.prompts import ChatPromptTemplate
|
@@ -10,6 +10,9 @@ from langchain_community.vectorstores import FAISS
|
|
10 |
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
11 |
import time
|
12 |
|
|
|
|
|
|
|
13 |
# Retrieve API keys from environment variables
|
14 |
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
15 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
@@ -45,7 +48,9 @@ Questions: {input}
|
|
45 |
|
46 |
def vector_embedding():
|
47 |
if "vectors" not in st.session_state:
|
48 |
-
st.session_state.embeddings
|
|
|
|
|
49 |
st.session_state.loader = PyPDFDirectoryLoader("./Data_Science") # Data Ingestion
|
50 |
st.session_state.docs = st.session_state.loader.load() # Document Loading
|
51 |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) # Chunk Creation
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
from langchain_groq import ChatGroq
|
4 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
7 |
from langchain_core.prompts import ChatPromptTemplate
|
|
|
10 |
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
11 |
import time
|
12 |
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
# Retrieve API keys from environment variables
|
17 |
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
18 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
|
|
48 |
|
49 |
def vector_embedding():
|
50 |
if "vectors" not in st.session_state:
|
51 |
+
st.session_state.embeddings=HuggingFaceBgeEmbeddings(model_name="BAAI/bge-small-en-v1.5",
|
52 |
+
model_kwargs={'device':'cpu'},
|
53 |
+
encode_kwargs={'normalize_embeddings':True})
|
54 |
st.session_state.loader = PyPDFDirectoryLoader("./Data_Science") # Data Ingestion
|
55 |
st.session_state.docs = st.session_state.loader.load() # Document Loading
|
56 |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) # Chunk Creation
|