Spaces:
Sleeping
Sleeping
Update app.py
Browse filesMultiple frames and data stats
app.py
CHANGED
|
@@ -7,20 +7,26 @@ from pydantic import BaseModel
|
|
| 7 |
import os
|
| 8 |
import io
|
| 9 |
import base64
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Set JAX to use CPU platform (adjust if GPU is needed)
|
| 12 |
os.environ['JAX_PLATFORMS'] = 'cpu'
|
| 13 |
|
| 14 |
-
# Load the model once globally
|
| 15 |
model = OctoModel.load_pretrained("hf://rail-berkeley/octo-small-1.5")
|
| 16 |
|
| 17 |
# Initialize FastAPI app
|
| 18 |
-
app = FastAPI(
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# Define request body model
|
| 21 |
class InferenceRequest(BaseModel):
|
| 22 |
-
image_base64: str #
|
| 23 |
task: str = "pick up the fork" # Default task
|
|
|
|
| 24 |
|
| 25 |
# Health check endpoint
|
| 26 |
@app.get("/health")
|
|
@@ -29,37 +35,54 @@ async def health_check():
|
|
| 29 |
|
| 30 |
# Inference endpoint
|
| 31 |
@app.post("/predict")
|
| 32 |
-
async def predict(request: InferenceRequest):
|
| 33 |
try:
|
| 34 |
-
#
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
img = Image.open(io.BytesIO(img_data)).resize((256, 256))
|
| 41 |
-
img = np.array(img)
|
| 42 |
|
| 43 |
-
#
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
observation = {
|
| 46 |
-
"image_primary":
|
| 47 |
-
"timestep_pad_mask": np.
|
| 48 |
}
|
| 49 |
|
| 50 |
# Create task and predict actions
|
| 51 |
task_obj = model.create_tasks(texts=[request.task])
|
| 52 |
actions = model.sample_actions(
|
| 53 |
-
observation,
|
| 54 |
-
task_obj,
|
| 55 |
-
unnormalization_statistics=model.dataset_statistics[
|
| 56 |
rng=jax.random.PRNGKey(0)
|
| 57 |
)
|
| 58 |
-
actions = actions[0]
|
| 59 |
|
| 60 |
-
# Convert
|
| 61 |
actions_list = actions.tolist()
|
| 62 |
|
| 63 |
return {"actions": actions_list}
|
| 64 |
except Exception as e:
|
| 65 |
-
raise HTTPException(status_code=500, detail=f"Error processing request: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import os
|
| 8 |
import io
|
| 9 |
import base64
|
| 10 |
+
from typing import List
|
| 11 |
+
from fastapi.openapi.docs import get_swagger_ui_html
|
| 12 |
|
| 13 |
# Set JAX to use CPU platform (adjust if GPU is needed)
|
| 14 |
os.environ['JAX_PLATFORMS'] = 'cpu'
|
| 15 |
|
| 16 |
+
# Load the model once globally
|
| 17 |
model = OctoModel.load_pretrained("hf://rail-berkeley/octo-small-1.5")
|
| 18 |
|
| 19 |
# Initialize FastAPI app
|
| 20 |
+
app = FastAPI(
|
| 21 |
+
title="Octo Model Inference API",
|
| 22 |
+
docs_url="/" # Swagger UI at root
|
| 23 |
+
)
|
| 24 |
|
| 25 |
# Define request body model
|
| 26 |
class InferenceRequest(BaseModel):
|
| 27 |
+
image_base64: List[str] # List of base64-encoded images in time sequence
|
| 28 |
task: str = "pick up the fork" # Default task
|
| 29 |
+
window_size: int = 2 # Default window size, configurable
|
| 30 |
|
| 31 |
# Health check endpoint
|
| 32 |
@app.get("/health")
|
|
|
|
| 35 |
|
| 36 |
# Inference endpoint
|
| 37 |
@app.post("/predict")
|
| 38 |
+
async def predict(request: InferenceRequest, dataset_name: str = "bridge_dataset"):
|
| 39 |
try:
|
| 40 |
+
# Validate input
|
| 41 |
+
if len(request.image_base64) < request.window_size:
|
| 42 |
+
raise HTTPException(
|
| 43 |
+
status_code=400,
|
| 44 |
+
detail=f"At least {request.window_size} images required for the specified window size"
|
| 45 |
+
)
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
# Process images
|
| 48 |
+
images = []
|
| 49 |
+
for img_base64 in request.image_base64:
|
| 50 |
+
if img_base64.startswith("data:image"):
|
| 51 |
+
img_base64 = img_base64.split(",")[1]
|
| 52 |
+
img_data = base64.b64decode(img_base64)
|
| 53 |
+
img = Image.open(io.BytesIO(img_data)).resize((256, 256))
|
| 54 |
+
img = np.array(img)
|
| 55 |
+
images.append(img)
|
| 56 |
+
|
| 57 |
+
# Stack all images and add batch dimension
|
| 58 |
+
img_array = np.stack(images)[np.newaxis, ...] # Shape: (1, T, 256, 256, 3)
|
| 59 |
observation = {
|
| 60 |
+
"image_primary": img_array,
|
| 61 |
+
"timestep_pad_mask": np.full((1, len(images)), True, dtype=bool) # Shape: (1, T)
|
| 62 |
}
|
| 63 |
|
| 64 |
# Create task and predict actions
|
| 65 |
task_obj = model.create_tasks(texts=[request.task])
|
| 66 |
actions = model.sample_actions(
|
| 67 |
+
observation,
|
| 68 |
+
task_obj,
|
| 69 |
+
unnormalization_statistics=model.dataset_statistics[dataset_name]["action"],
|
| 70 |
rng=jax.random.PRNGKey(0)
|
| 71 |
)
|
| 72 |
+
actions = actions[0] # Remove batch dimension, Shape: (horizon, action_dim)
|
| 73 |
|
| 74 |
+
# Convert to list for JSON response
|
| 75 |
actions_list = actions.tolist()
|
| 76 |
|
| 77 |
return {"actions": actions_list}
|
| 78 |
except Exception as e:
|
| 79 |
+
raise HTTPException(status_code=500, detail=f"Error processing request: {str(e)}")
|
| 80 |
+
|
| 81 |
+
# Custom Swagger UI route (optional)
|
| 82 |
+
@app.get("/docs", include_in_schema=False)
|
| 83 |
+
async def custom_swagger_ui_html():
|
| 84 |
+
return get_swagger_ui_html(
|
| 85 |
+
openapi_url=app.openapi_url,
|
| 86 |
+
title=app.title + " - Swagger UI",
|
| 87 |
+
oauth2_redirect_url=app.swagger_ui_oauth2_redirect_url,
|
| 88 |
+
)
|