File size: 3,796 Bytes
ca9de3e 38755c8 561eae2 ca9de3e dbdf27f 1f11abe ca9de3e 436e184 e3c3d2e ca9de3e 7fc9e7a 9ae96f5 8d6e45b c776112 ca9de3e e3c3d2e 861a759 ca9de3e 861a759 95c2929 ca9de3e 861a759 ca9de3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import pandas as pd
import numpy as np
import tensorflow as tf
from transformers.models.bert import BertTokenizer
from transformers import TFBertModel
import streamlit as st
import pandas as pd
from transformers import TFAutoModel
hist_loss= [0.1971,0.0732,0.0465,0.0319,0.0232,0.0167,0.0127,0.0094,0.0073,0.0058,0.0049,0.0042]
hist_acc = [0.9508,0.9811,0.9878,0.9914,0.9936,0.9954,0.9965,0.9973,0.9978,0.9983,0.9986,0.9988]
hist_val_acc = [0.9804,0.9891,0.9927,0.9956,0.9981,0.998,0.9991,0.9997,0.9991,0.9998,0.9998,0.9998]
hist_val_loss = [0.0759,0.0454,0.028,0.015,0.0063,0.0064,0.004,0.0011,0.0021,0.00064548,0.0010,0.00042896]
Epochs = [i for i in range(1,13)]
hist_loss[:] = [x * 100 for x in hist_loss]
hist_acc[:] = [x * 100 for x in hist_acc]
hist_val_acc[:] = [x * 100 for x in hist_val_acc]
hist_val_loss[:] = [x * 100 for x in hist_val_loss]
d = {'val_acc':hist_val_acc, 'acc':hist_acc,'loss':hist_loss, 'val_loss':hist_val_loss, 'Epochs': Epochs}
chart_data = pd.DataFrame(d)
chart_data.index = range(1,13)
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def load_model(show_spinner=True):
yorum_model = tf.keras.models.load_model('TC32_SavedModel')
tokenizer = BertTokenizer.from_pretrained('NimaKL/tc32_test')
return yorum_model, tokenizer
st.set_page_config(layout='wide', initial_sidebar_state='expanded')
col1, col2= st.columns(2)
with col1:
st.title("TC32 Multi-Class Text Classification")
st.subheader('Model Loss and Accuracy')
st.markdown("<br>", unsafe_allow_html=True)
st.area_chart(chart_data, height=320)
yorum_model, tokenizer = load_model()
with col2:
st.title("Sınıfı bulmak için bir şikayet girin. (Ctrl+Enter)")
st.subheader("Enter complaint (in Turkish) to find the class.")
#st.subheader("Şikayet")
text = st.text_area("", "Bebeğim haftada bir kutu mama bitiriyor. Geçen hafta 135 tl'ye aldığım mama bugün 180 tl olmuş. Ben de artık aptamil almayacağım. Tüketici haklarına şikayet etmemiz gerekiyor. Yazıklar olsun.", height=285)
def prepare_data(input_text, tokenizer):
token = tokenizer.encode_plus(
input_text,
max_length=256,
truncation=True,
padding='max_length',
add_special_tokens=True,
return_tensors='tf'
)
return {
'input_ids': tf.cast(token.input_ids, tf.float64),
'attention_mask': tf.cast(token.attention_mask, tf.float64)
}
def make_prediction(model, processed_data, classes=['Alışveriş','Anne-Bebek','Beyaz Eşya','Bilgisayar','Cep Telefonu','Eğitim','Elektronik','Emlak ve İnşaat','Enerji','Etkinlik ve Organizasyon','Finans','Gıda','Giyim','Hizmet','İçecek','İnternet','Kamu','Kargo-Nakliyat','Kozmetik','Küçük Ev Aletleri','Medya','Mekan ve Eğlence','Mobilya - Ev Tekstili','Mücevher Saat Gözlük','Mutfak Araç Gereç','Otomotiv','Sağlık','Sigorta','Spor','Temizlik','Turizm','Ulaşım']):
probs = model.predict(processed_data)[0]
return classes[np.argmax(probs)]
if text:
with col1:
with st.spinner('Wait for it...'):
processed_data = prepare_data(text, tokenizer)
result = make_prediction(yorum_model, processed_data=processed_data)
st.markdown("<br>", unsafe_allow_html=True)
st.success("Tahmin başarıyla tamamlandı!")
with col2:
description = '<table style="border: collapse; padding-top: 1px;"><tr><div style="height: 62px;"></div></tr><tr><p style="border-width: medium; border-color: #aa5e70; border-radius: 10px;padding-top: 1px;padding-left: 20px;background:#20212a;font-family:Courier New; color: white;font-size: 36px; font-weight: boldest;">'+result+'</p></tr><table>'
st.markdown(description, unsafe_allow_html=True)
|