File size: 6,270 Bytes
35a1c4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import streamlit as st
import torch
import numpy as np
from transformers import AutoTokenizer
from transformers import BertForSequenceClassification


st.set_page_config(layout='wide', initial_sidebar_state='expanded')
col1, col2= st.columns(2)

with col1:
    st.title("FireWatch")
    st.markdown("PREDICT WHETHER HEAT SIGNATURES AROUND THE GLOBE ARE LIKELY TO BE FIRES!")
    st.markdown("Traing Code at:")
    st.markdown("https://colab.research.google.com/drive/1-IfOMJ-X8MKzwm3UjbJbK6RmhT7tk_ye?usp=sharing")
    st.markdown("Try the Model Yourself at:")
    st.markdown("https://colab.research.google.com/drive/1GmweeQrkzs0OXQ_KNZsWd1PQVRLCWDKi?usp=sharing")

    st.markdown("## Sample Table")

    table_html = """
    <table style="border-collapse: collapse; width: 100%;">
  <tr style="border: 1px solid orange;">
    <th style="border: 1px solid orange; font-weight: bold;">Category</th>
    <th style="border: 1px solid orange; font-weight: bold;">Latitude, Longitude, Brightness, FRP</th>
  </tr>
  <tr style="border: 1px solid orange;">
    <td style="border: 1px solid orange;">Likely</td>
    <td style="border: 1px solid orange;">-26.76123, 147.15512, 393.02, 203.63</td>
  </tr>
  <tr style="border: 1px solid orange;">
    <td style="border: 1px solid orange;">Likely</td>
    <td style="border: 1px solid orange;">-26.7598, 147.14514, 361.54, 79.4</td>
  </tr>
  <tr style="border: 1px solid orange;">
    <td style="border: 1px solid orange;">Unlikely</td>
    <td style="border: 1px solid orange;">-25.70059, 149.48932, 313.9, 5.15</td>
  </tr>
  <tr style="border: 1px solid orange;">
    <td style="border: 1px solid orange;">Unlikely</td>
    <td style="border: 1px solid orange;">-24.4318, 151.83102, 307.98, 8.79</td>
  </tr>
  <tr style="border: 1px solid orange;">
    <td style="border: 1px solid orange;">Unlikely</td>
    <td style="border: 1px solid orange;">-23.21878, 148.91298, 314.08, 7.4</td>
  </tr>
  <tr style="border: 1px solid orange;">
    <td style="border: 1px solid orange;">Likely</td>
    <td style="border: 1px solid orange;">7.87518, 19.9241, 316.32, 39.63</td>
  </tr>
  <tr style="border: 1px solid orange;">
    <td style="border: 1px solid orange;">Unlikely</td>
    <td style="border: 1px solid orange;">-20.10942, 148.14326, 314.39, 8.8</td>
  </tr>
  <tr style="border: 1px solid orange;">
    <td style="border: 1px solid orange;">Unlikely</td>
    <td style="border: 1px solid orange;">7.87772, 19.9048, 304.14, 13.43</td>
  </tr>
  <tr style="border: 1px solid orange;">
    <td style="border: 1px solid orange;">Likely</td>
    <td style="border: 1px solid orange;">-20.79866, 124.46834, 366.74, 89.06</td>
  </tr>
    </table>
    """
    
    st.markdown(table_html, unsafe_allow_html=True)
tree = """
  <div class="pine-tree" style="width: 50%; margin: 0 auto;">
  <div class="tree-top"></div>
  <div class="tree-top2"></div>
  <div class="tree-bottom">
    <div class="trunk"></div>
  </div>
</div>
<style>
.pine-tree {
  width: 15vw;
  height: 20vw;
  position: relative;
  display: flex;
  justify-content: center;
  align-items: center;
}
.tree-top {
  width: 0;
  height: 0;
  border-left: 8vw solid transparent;
  border-right: 8vw solid transparent;
  border-bottom: 13vw solid green;
  position: absolute;
  top: 0;
  left: 0;
  right: 0;
  margin: auto;
}
.tree-top2 {
  width: 0;
  height: 0;
  border-left: 8vw solid transparent;
  border-right: 8vw solid transparent;
  border-bottom: 13vw solid green;
  position: absolute;
  top: 3vw;
  left: 0;
  right: 0;
  margin: auto;
}
.tree-bottom {
  width: 8vw;
  height: 10vw;
  background-color: brown;
  position: absolute;
  bottom: 0;
  left: 0;
  right: 0;
  top: 21vw;
  margin: auto;
}
.trunk {
  width: 3vw;
  height: 10vw;
  background-color: brown;
  position: absolute;
  bottom: 0;
  left: 0;
  right: 0;
  margin: auto;
}
</style>
    """


with col2:
    @st.cache(suppress_st_warning=True, allow_output_mutation=True)
    def load_model(show_spinner=True):
        MODEL_PATH = "NimaKL/FireWatch_tiny_75k"
        model = BertForSequenceClassification.from_pretrained(MODEL_PATH)
        return model



token_id = []
attention_masks = []
def preprocessing(input_text, tokenizer):
    '''
                  Returns <class transformers.tokenization_utils_base.BatchEncoding> with the following fields:
                    - input_ids: list of token ids
                    - token_type_ids: list of token type ids
                    - attention_mask: list of indices (0,1) specifying which tokens should considered by the model (return_attention_mask = True).
    '''
    return tokenizer.encode_plus(
        input_text,
        add_special_tokens = True,
        max_length = 16,
        pad_to_max_length = True,
        return_attention_mask = True,
        return_tensors = 'pt'
            )
    
def predict(new_sentence):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # We need Token IDs and Attention Mask for inference on the new sentence
    test_ids = []
    test_attention_mask = []
    # Apply the tokenizer
    encoding = preprocessing(new_sentence, tokenizer)
    # Extract IDs and Attention Mask
    test_ids.append(encoding['input_ids'])
    test_attention_mask.append(encoding['attention_mask'])
    test_ids = torch.cat(test_ids, dim = 0)
    test_attention_mask = torch.cat(test_attention_mask, dim = 0)
    # Forward pass, calculate logit predictions
    with torch.no_grad():
        output = model(test_ids.to(device), token_type_ids = None, attention_mask = test_attention_mask.to(device))
        prediction = 'Likely' if np.argmax(output.logits.cpu().numpy()).flatten().item() == 1 else 'Unlikely'
        pred = 'Predicted Class: '+ prediction
        return pred      

model = load_model()
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
with col2:
    st.markdown('## Enter Prediction Data in Correct Format "Latitude, Longtitude, Brightness, FRP"')
    text = st.text_input('Predition Data: ', 'Example:  8.81064, -65.07661, 328.04, 18.76')
    aButton = st.button('Predict') 

    if text or aButton:
        with st.spinner('Wait for it...'):
            st.success(predict(text))
            st.markdown(tree, unsafe_allow_html=True)