File size: 25,382 Bytes
9d37057
 
 
 
 
 
 
 
 
 
 
 
 
 
62e949f
c967ca0
 
fa2e30c
 
 
 
 
c967ca0
 
f0be77b
da42058
f0be77b
 
 
5b8c50c
da42058
30266af
 
 
 
 
31ed046
30266af
5b8c50c
30266af
9d37057
 
 
 
 
 
 
345ead2
9d37057
9cb47cc
9d37057
 
9cb47cc
fa2e30c
 
 
 
 
9d37057
 
 
345ead2
9d37057
9cb47cc
9d37057
fa2e30c
 
 
 
 
9d37057
 
fa2e30c
9d37057
 
 
 
345ead2
fa2e30c
 
 
 
 
9d37057
 
 
 
 
 
 
 
 
 
3c12f27
9d37057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0eee34
9d37057
 
 
 
fa2e30c
9cb47cc
9d37057
 
 
 
 
fa2e30c
9cb47cc
9d37057
 
 
 
 
 
9cb47cc
9d37057
3c12f27
 
 
 
 
 
9d37057
 
 
f0be77b
9d37057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
345ead2
9d37057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2170662
9d37057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30266af
9d37057
 
 
 
 
 
 
30266af
9d37057
 
 
 
bac6155
10758e0
9125740
cab82ce
 
 
10758e0
cab82ce
9f4f7c4
 
 
 
 
 
 
 
 
 
 
 
cab82ce
 
fa2e30c
cab82ce
9d37057
9125740
9d37057
31ed046
9d37057
5bef35c
2d2d25b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d37057
2d2d25b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d37057
2d2d25b
07745e7
2d2d25b
 
9d37057
2d2d25b
 
31ed046
fa2e30c
9d37057
2d2d25b
 
fa2e30c
2d2d25b
 
 
 
 
9d37057
fa2e30c
9d37057
 
 
 
88d5e43
2d2d25b
 
 
 
6fe1efd
4c40788
2d2d25b
 
 
 
9d37057
2d2d25b
 
9d37057
2d2d25b
4c40788
7f80b69
2d2d25b
 
 
 
 
 
 
 
 
 
 
 
a2b68be
 
2d2d25b
c67c643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636d23
c67c643
 
 
 
 
 
 
9d37057
 
 
 
 
 
 
2636d23
ba3bedb
 
5c5e0c3
31ed046
9d37057
 
 
 
 
 
 
 
 
 
 
8f072d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import json
import numpy as np
import re
from itertools import combinations as itertools_combinations
import os
import sys
from SPARQLWrapper import SPARQLWrapper, JSON
from sentence_transformers import SentenceTransformer
import aiohttp
import asyncio
import streamlit as st
import time
from openai import OpenAI
import sys
import time
from bs4 import BeautifulSoup
import requests
import nest_asyncio
import httpx


nest_asyncio.apply()


folder_path = '/home/user/app/qids_folder'

if not os.path.exists(folder_path):
    os.mkdir(folder_path)
else:
    pass


folder_path_1 = '/home/user/app/info_extraction'

if not os.path.exists(folder_path_1):
    os.mkdir(folder_path_1)
    print(f"Folder created at {folder_path_1}")
else:
    pass

model = SentenceTransformer("Lajavaness/bilingual-embedding-large", trust_remote_code=True)

async def fetch_json(url, session):
    async with session.get(url) as response:
        return await response.json()

async def combination_method(name, session):
    async with aiohttp.ClientSession() as session:
        data = set()
        new_name = name.split()
        x = itertools_combinations(new_name, 2)
        for i in x:
            new_word = (i[0] + " " + i[1])
            url = f"https://en.wikipedia.org/w/api.php?action=query&list=search&srsearch={new_word}&srlimit=20&srprop=&srenablerewrites=True&format=json"
            json_data = await fetch_json(url, session)
            suggestion = json_data.get('query', {}).get('search', {})
            for pageid in suggestion:
                data.add(pageid.get('title', {}))
    return data

async def single_method(name, session):
    async with aiohttp.ClientSession() as session:
        data = set()
        new_name = name.replace("-", " ").replace("/", " ").split()
        for i in new_name:
            url = f"https://en.wikipedia.org/w/api.php?action=query&list=search&srsearch={i}&srlimit=20&srprop=&srenablerewrites=True&format=json"
            json_data = await fetch_json(url, session)
            suggestion = json_data.get('query', {}).get('search', {})
            for pageid in suggestion:
                data.add(pageid.get('title', {}))
    return data

async def mains(name, deep_search):
    data = set()
    disam_data = set()
    qids = set()
    
    async with aiohttp.ClientSession() as session:
        url = f"https://en.wikipedia.org/w/api.php?action=query&list=search&srsearch={name}&srlimit=20&srprop=&srenablerewrites=True&format=json"
        json_data = await fetch_json(url, session)
        suggestion = json_data.get('query', {}).get('search', {})
        for pageid in suggestion:
            data.add(pageid.get('title', {}))

        wikipedia_url = f"https://en.wikipedia.org/w/api.php?action=query&list=search&srsearch={name}&srlimit=1&srprop=&srenablerewrites=True&srinfo=suggestion&format=json"
        json_data = await fetch_json(wikipedia_url, session)
        suggestion = json_data.get('query', {}).get('searchinfo', {}).get('suggestion')

        if suggestion:
            suggested_url = f"https://en.wikipedia.org/w/api.php?action=query&list=search&srsearch={suggestion}&srlimit=10&srprop=&srenablerewrites=True&srinfo=suggestion&format=json"
            json_suggestion = await fetch_json(suggested_url, session)
            results = json_suggestion.get('query', {}).get('search')
            for i in results:
                    data.add(i.get('title'))

        # Handle disambiguation links
        if data != {0}:
            for ids in data:
                titles = set()
                wikipedia_disambiguation = f"https://en.wikipedia.org/w/api.php?action=query&generator=links&format=json&redirects=1&pageids={ids}&prop=pageprops&gpllimit=50&ppprop=wikibase_item"
                json_id = await fetch_json(wikipedia_disambiguation, session)
                try:
                    title = json_id.get('query').get('pages')
                    for k, v in title.items():
                        titles.add(v.get("title"))
                except:
                    pass

                if "Help:Disambiguation" in titles:
                    for i in titles:
                        if ":" not in i:
                            disam_data.add(i)
                else:
                    disam_data.add(ids)

        # Makes combinations of the name
        if deep_search == "Yes":
            if len(name.replace("-", " ").split()) >= 3: 
                combination_names = await combination_method(name, session)
                for i in combination_names:
                    disam_data.add(i)

        # Checks every word alone
        if deep_search == "Yes":
            if len(name.replace("-", " ").replace("/", " ").split()) >= 2:
                singles = await single_method(name, session)
                for i in singles:
                    disam_data.add(i)

        for ids in disam_data:
            try:
                wikibase_url = f"https://en.wikipedia.org/w/api.php?action=query&titles={ids}&prop=pageprops&format=json"
                json_qid = await fetch_json(wikibase_url, session)
                wikidata_qid = json_qid.get('query', {}).get('pages', {})
                for page_id, page_data in wikidata_qid.items():
                    page_props = page_data.get('pageprops', {})
                    wikibase_item = page_props.get('wikibase_item', None)
                    if wikibase_item:
                        qids.add(wikibase_item)
            except:
                pass

        with open(f"/home/user/app/qids_folder/{name}.json", "w") as f:
            json.dump(list(qids), f)


async def get_results(query):
    user_agent = "WDQS-example Python/%s.%s" % (sys.version_info[0], sys.version_info[1])
    url = "https://query.wikidata.org/sparql"
    sparql = SPARQLWrapper(url, agent=user_agent)
    sparql.setQuery(query)
    sparql.setReturnFormat(JSON)
    return sparql.query().convert()
    
def get_resultss(query):
    user_agent = "WDQS-example Python/%s.%s" % (sys.version_info[0], sys.version_info[1])
    url = "https://query.wikidata.org/sparql"
    sparql = SPARQLWrapper(url, agent=user_agent)
    sparql.setQuery(query)
    sparql.setReturnFormat(JSON)
    return sparql.query().convert()

    
def cleaner(text):
    text = text.replace('\\', '').replace('\n', ' ')
    text = re.sub(r'\{.*?\}', '', text)
    text = re.sub(' +', ' ', text).strip()
    return text

async def retriever(qid):
    async with aiohttp.ClientSession() as session: 
        list_with_sent = []

        query_label = f"""SELECT ?subjectLabel
          WHERE {{
            wd:{qid} rdfs:label ?subjectLabel .
            FILTER(LANG(?subjectLabel) = "en")
          }}
          """

        results = await get_results(query_label)

        label = None
        if results["results"]["bindings"]:
            for result in results["results"]["bindings"]:
                for key, value in result.items():
                    label = value.get("value", {}).lower()

        query_alias = f"""SELECT ?alias
          WHERE {{
            wd:{qid} skos:altLabel ?alias
            FILTER(LANG(?alias) = "en")
          }}
          """

        alias_list = []
        results = await get_results(query_alias)

        for result in results["results"]["bindings"]:
            for key, value in result.items():
                alias = value.get("value", "None")
                alias_list.append(alias)

        query_desci = f"""SELECT ?subjectLabel
        WHERE {{
        ?subjectLabel schema:about wd:{qid} ;
                      schema:inLanguage "en" ;
                      schema:isPartOf <https://en.wikipedia.org/> .
        }}
        """

        results = await get_results(query_desci)
        cleaned_first_para = "None"
        
        if results["results"]["bindings"]:
            for result in results["results"]["bindings"]:
                for key, value in result.items():
                    desc = value.get("value", "None")

                title = desc.split("/wiki/")[1]

                url = f"https://en.wikipedia.org/w/api.php?action=query&prop=extracts&titles={title}&exintro=&exsentences=2&explaintext=&redirects=&formatversion=2&format=json"
                
     
                json_data = await fetch_json(url, session)
                cleaned_first_para = cleaner(json_data.get('query', {}).get('pages', [{}])[0].get('extract', 'None'))
        else:
            query_desc = f"""SELECT ?subjectLabel
            WHERE {{
            wd:{qid} schema:description ?subjectLabel .
            FILTER(LANG(?subjectLabel) = "en")
            }}
            """

            results = await get_results(query_desc)
            if results["results"]["bindings"]:
                for result in results["results"]["bindings"]:
                    for key, value in result.items():
                        cleaned_first_para = value.get("value", "None")

        list_with_sent.append({"qid": qid, "label": label, "description": cleaned_first_para})

        if alias_list:
            for alias in alias_list:
                list_with_sent.append({"qid": qid, "label": alias.lower(), "description": cleaned_first_para})

        return list_with_sent

async def main(name):
    with open(f"/home/user/app/qids_folder/{name}.json", "r") as f:
        final_list = []
        qids = json.load(f)
        for q in qids:
            returned_list = await retriever(q)
            if returned_list:
                final_list.extend(returned_list)

        with open(f"/home/user/app/info_extraction/{name}.json", "w", encoding="utf-8") as flast:
            json.dump(final_list, flast)

def main_cli():
    st.title("✨ Entity Linking Application ✨")
    st.caption("This web application is part of my master’s dissertation.")

    if 'run_button' in st.session_state and st.session_state.run_button == True:
        st.session_state.running = True
    else:
        st.session_state.running = False
        
    api_token = st.text_input("Enter your API key from [GitHub](https://github.com/marketplace/models/azure-openai/gpt-4o):", "", type="password", disabled=st.session_state.running)   
    
    if api_token:
        endpoint = "https://models.inference.ai.azure.com"
        model_name = "gpt-4o"
        client = OpenAI(
        base_url=endpoint,
        api_key=api_token,
    )
        st.success("API Token is set for this session.")
    else:
        st.warning("Please enter an API token to proceed.")
        
    input_sentence_user = st.text_input("Enter a sentence:", "", disabled=st.session_state.running)
    input_mention_user = st.text_input("Enter a textural reference (mention) that is inside the sentence:", "", disabled=st.session_state.running)
    deep_search = st.selectbox("Perform deep search? (Useful for difficult mentions)", ['Yes', 'No'], index=1, disabled=st.session_state.running)
    disambi = st.selectbox("Run acronym disambiguation? (Enable it if the mention include an acronym or if it is nested)", ['Yes', 'No'], index=0, disabled=st.session_state.running)
    
    if st.button("Run Entity Linking", key="run_button", disabled=st.session_state.running):
        if input_sentence_user and input_mention_user:
            # check if the mention is in the sentence
            if input_mention_user in input_sentence_user:
                with st.spinner("Applying Data Normalization module... (1/5)"):
                # Data Normalization               
                    start_time = time.time()
                    
                    list_with_full_names = []
                    list_with_names_to_show = []
                     
                    if disambi == "Yes":
                        response = client.chat.completions.create(
                            messages=[
                                {
                                    "role": "system",
                                    "content": """
                                                I will give you one or more labels within a sentence. Your task is as follows:
    
                                                Identify each label in the sentence, and check if it is an acronym.
    
                                                If the label is an acronym, respond with the full name of the acronym.
                                                If the label is not an acronym, respond with the label exactly as it was given to you.
                                                If a label contains multiple terms (e.g., 'phase and DIC microscopy'), treat each term within the label as a separate label.
    
                                                This means you should identify and explain each part of the label individually.
                                                Each part should be on its own line in the response.
                                                Context-Specific Terms: If the sentence context suggests a relevant term that applies to each label (such as "study" in 'morphological, sedimentological, and stratigraphical study'), add that term to each label’s explanation.
    
                                                Use context clues to determine the appropriate term to add (e.g., 'study' or 'microscopy').
                                                Output Format: Your response should contain only the explanations, formatted as follows:
    
                                                Each label or part of a label should be on a new line.
                                                Do not include any additional text, and do not repeat the original sentence.
                                                Example 1:
    
                                                Input:
    
                                                label: phase and DIC microscopy
                                                context: Tardigrades have been extracted from samples using centrifugation with Ludox AM™ and mounted on individual microscope slides in Hoyer's medium for identification under phase and DIC microscopy.
                                                Expected response:
    
                                                phase: phase microscopy
                                                DIC microscopy: Differential interference contrast microscopy
                                                Example 2:
    
                                                Input:
    
                                                label: morphological, sedimentological, and stratigraphical study
                                                context: This paper presents results of a morphological, sedimentological, and stratigraphical study of relict beach ridges formed on a prograded coastal barrier in Bream Bay, North Island New Zealand.
                                                Expected response:
    
                                                morphological: morphological study
                                                sedimentological: sedimentological study
                                                stratigraphical: stratigraphical study
                                                IMPORTANT:
    
                                                Each label, even if nested within another, should be treated as an individual item.
                                                Each individual label or acronym should be output on a separate line.                               
                                                """
                                },
                                {
                                    "role": "user",
                                    "content": f"label:{input_mention_user}, context:{input_sentence_user}"
                                }
                            ],
                            temperature=1.0,
                            top_p=1.0,
                            max_tokens=1000,
                            model=model_name
                        )
                       
                        
                        kati = response.choices[0].message.content.splitlines()
                        print(response.choices[0].message.content)
                        for i in kati:
                            context = i.split(":")[-1].strip()
                            original_name = i.split(":")[0].strip()
                            list_with_full_names.append(context)
                            list_with_names_to_show.append(original_name)
                            
                        name = ",".join(list_with_full_names)
    
                    else:
                        name = input_mention_user
                        list_with_full_names.append(name)
                        list_with_names_to_show.append(name)
                    
                    input_sentence_user = input_sentence_user.replace(input_mention_user, name)  # Changing the mention to the correct one
                    
                    response = client.chat.completions.create(
                            messages=[
                                {
                                    "role": "system",
                                    "content": "Given a label or labels within a sentence, provide a brief description (2-3 sentences) explaining what the label represents, similar to how a Wikipedia entry would. Format your response as follows: label: description. I want only the description of the label, not the role in the context. Include the label in the description as well. For example: Sentiment analysis: Sentiment analysis is the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information.\nText analysis: Text mining, text data mining (TDM) or text analytics is the process of deriving high-quality information from text. It involves the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources.",
                                },
                                {
                                    "role": "user",
                                    "content": f"label:{name}, context:{input_sentence_user}"
                                }
                            ],
                            temperature=1.0,
                            top_p=1.0,
                            max_tokens=1000,
                            model=model_name
                        )
    
                    
                    z = response.choices[0].message.content.splitlines()
                    print(response.choices[0].message.content)
                    list_with_contexts = []
                    for i in z:
                        context = i.split(":")[-1].strip()
                        list_with_contexts.append(context)
                st.write("✅ Applied Data Normilzation module (1/5)")
                # Candidate Retrieval & Information Gathering
                async def big_main(mention, deep_search):
                    mention = mention.split(",")
                    with st.spinner("Applying Candidate Retrieval module... (2/5)"):
                        for i in mention:
                            await mains(i, deep_search)
                    st.write("✅ Applied Candidate Retrieval module (2/5)")
                    with st.spinner("Applying Information Gathering module... (3/5)"):
                        for i in mention:
                            await main(i)
                    st.write("✅ Applied Information Gathering module (3/5)")
                        
                asyncio.run(big_main(name, deep_search))

                number = 0
                for i,j,o in zip(list_with_full_names,list_with_contexts,list_with_names_to_show):
                    number += 1
                    with st.spinner(f"Applying Candidate Selection module... (4/5) [{number}/{len(list_with_full_names)}] (This may take a while)"):
                        with open(f"/home/user/app/info_extraction/{i}.json", "r") as f:
                            json_file = json.load(f)
                            lista = []
                            lista_1 = []
                            my_bar = st.progress(0)
                            for index, element in enumerate(json_file):
                                qid = element.get("qid")
                                link = f"https://www.wikidata.org/wiki/{qid}"
                                label = element.get("label")
                                description = element.get("description")
                                
                                label_emb = model.encode([label])
                                desc_emb = model.encode([description])
                                
                                lista.append({link: [label_emb, desc_emb]})
                                my_bar.progress((index + 1) / len(json_file))
                                print(qid)
    
                            label_dataset_emb = model.encode([i])
                            desc_dataset_emb = model.encode([j])
    
                            for emb in lista:
                                for k, v in emb.items():
                                    cossim_label = model.similarity(label_dataset_emb, v[0][0])
                                    desc_label = model.similarity(desc_dataset_emb, v[1][0])
                                    emb_mean = np.mean([cossim_label, desc_label])
                                    lista_1.append({k: emb_mean})
    
                            sorted_data = sorted(lista_1, key=lambda x: list(x.values())[0], reverse=True)
                            
                        my_bar.empty()
                        st.write(f"✅ Applined Candidate Selection module (4/5) [{number}/{len(list_with_full_names)}]")
                    with st.spinner(f"Applying Candidate Matching module... (5/5) [{number}/{len(list_with_full_names)}]"):
                        if sorted_data:
                            sorted_top = sorted_data[0]
                            for k, v in sorted_top.items():
                                qid = k.split("/")[-1]
                                
                                wikidata2wikipedia = f"""
                                    SELECT ?wikipedia
                                    WHERE {{
                                          ?wikipedia schema:about wd:{qid} .
                                          ?wikipedia schema:isPartOf <https://en.wikipedia.org/> .
                                    }}
                                    """
                                results = get_resultss(wikidata2wikipedia)

                                for result in results["results"]["bindings"]:
                                    for key, value in result.items():
                                        wikipedia = value.get("value", "None")
                                
                                sparql = SPARQLWrapper("http://dbpedia.org/sparql")
                                wikidata2dbpedia = f"""
                                    SELECT ?dbpedia
                                    WHERE {{
                                          ?dbpedia owl:sameAs <http://www.wikidata.org/entity/{qid}>.
                                    }}
                                    """
                                sparql.setQuery(wikidata2dbpedia)
                                sparql.setReturnFormat(JSON)
                                results = sparql.query().convert()
                                
                                for result in results["results"]["bindings"]:
                                    dbpedia = result["dbpedia"]["value"]
                                    
                                st.write(f"✅ Applied Candidate Matching module (5/5) [{number}/{len(list_with_full_names)}]")    
                                st.text(f"The correct entity for '{o}' is:")    
                                st.success(f"Wikipedia: {wikipedia}")
                                st.success(f"Wikidata: {k}")
                                st.success(f"DBpedia: {dbpedia}")
                        else:
                            st.warning(f"The entity: {o} is NIL.")
            else:
                st.warning(f"The mention '{input_mention_user}' was NOT found in the sentence.")
        else:
            st.warning("Please fill in both fields.")
        end_time = time.time()
        execution_time = end_time - start_time
        ETA = time.strftime("%H:%M:%S", time.gmtime(execution_time))
        st.write(f"⌛ Execution time: {ETA}")
        
        st.button("Rerun", disabled=False)

        # i think this part can be removed now
        folder_path = "qids_folder"
        for filename in os.listdir(folder_path):
            file_path = os.path.join(folder_path, filename)
            os.remove(file_path)
            
        folder_path_1 = "info_extraction"
        for filename in os.listdir(folder_path_1):
            file_path = os.path.join(folder_path_1, filename)
            os.remove(file_path)
            
if __name__ == "__main__":
    main_cli()