import streamlit as st from PIL import Image import cv2 from ultralytics import YOLO with st.sidebar: st.title("Control panel") file = st.file_uploader("Choose an image or a video", type=["png", "jpg", "jpeg", "mp4"]) radio_button1 = st.radio("Model", ["model_train_17", "model_train_15"]) radio_button2=st.radio("Visualize",["No","Yes"]) st.header("Palm Tree Detection") st.write( '
Counting the number of palm and coconut trees
', unsafe_allow_html=True ) status_placeholder = st.empty() if radio_button1 == "model_train_17": model = YOLO('train_17_best.pt') elif radio_button1 == "model_train_15": model = YOLO('train_15_best.pt') def count_objects(results, class_names): """Count objects detected for each class.""" class_counts = {name: 0 for name in class_names.values()} for box in results[0].boxes: cls_idx = int(box.cls[0]) class_name = class_names.get(cls_idx, None) if class_name: class_counts[class_name] += 1 else: st.warning(f"Unknown class index detected: {cls_idx}") return class_counts def run_inference(file): file_type = file.type.split('/')[0] if file_type == 'image': image = Image.open(file) st.image(image, caption="Uploaded Image", use_container_width=True) status_placeholder.write("Processing...Please wait....") results = model.predict(source=image, save=False) class_names = model.names counts = count_objects(results, class_names) st.write("Detected objects:") for obj, count in counts.items(): st.write(f"{obj}: {count}") status_placeholder.empty() if(radio_button2=="Yes"): status_placeholder.write("Processing...") st.image(results[0].plot(), caption="Detected Objects", use_container_width=True) status_placeholder.empty() # elif file_type == 'video': # temp_file = f"temp_{file.name}" # compressed_file = f"compressed_{file.name}" # # Save the uploaded video to a temporary file # with open(temp_file, "wb") as f: # f.write(file.getbuffer()) # # Compress the video # st.write("Compressing video...") # clip = VideoFileClip(temp_file) # clip.write_videofile(compressed_file, codec="libx264", audio_codec="aac") # clip.close() # st.write("Compression complete. Processing video...") # # Process the compressed video # cap = cv2.VideoCapture(compressed_file) # stframe = st.empty() # total_counts = {name: 0 for name in model.names} # while cap.isOpened(): # ret, frame = cap.read() # if not ret: # break # # Perform inference on each video frame # results = model.predict(source=frame, save=False) # # Count the objects in the frame # frame_counts = {model.names[int(box.cls[0])]: 0 for box in results[0].boxes} # for box in results[0].boxes: # class_name = model.names[int(box.cls[0])] # frame_counts[class_name] += 1 # for obj, count in frame_counts.items(): # total_counts[obj] += count # # Display the processed video frame # stframe.image(results[0].plot(), channels="BGR", use_container_width=True) # cap.release() # st.write("Video processing complete.") # # Display total counts # st.write("Total detected objects in the video:") # for obj, count in total_counts.items(): # st.write(f"{obj}: {count}") if file is not None: run_inference(file)