Nikhitha2310 commited on
Commit
8d04779
·
verified ·
1 Parent(s): b46839c

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +116 -0
  2. requirements.txt +7 -0
  3. train_15_best.pt +3 -0
  4. train_17_best.pt +3 -0
app.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ import cv2
4
+ from ultralytics import YOLO
5
+ from moviepy import VideoFileClip
6
+
7
+
8
+ with st.sidebar:
9
+ st.title("Control panel")
10
+ file = st.file_uploader("Choose an image or a video", type=["png", "jpg", "jpeg", "mp4"])
11
+ radio_button1 = st.radio("Model", ["model_train_17", "model_train_15"])
12
+ radio_button2=st.radio("Visualize",["No","Yes"])
13
+
14
+ st.header("Palm Tree Detection")
15
+ st.write(
16
+ '<p style="font-family: Arial, sans-serif; font-size: px; color: black; font-style: italic;">Counting the number of palm and coconut trees</p>',
17
+ unsafe_allow_html=True
18
+ )
19
+
20
+ status_placeholder = st.empty()
21
+ if radio_button1 == "model_train_17":
22
+ model = YOLO(r'C:\Users\Tectoro\Desktop\Palm tree detection\train_17_best.pt')
23
+ elif radio_button1 == "model_train_15":
24
+ model = YOLO(r'C:\Users\Tectoro\Desktop\Palm tree detection\train_15_best.pt')
25
+
26
+
27
+
28
+
29
+ def count_objects(results, class_names):
30
+ """Count objects detected for each class."""
31
+ class_counts = {name: 0 for name in class_names.values()}
32
+ for box in results[0].boxes:
33
+ cls_idx = int(box.cls[0])
34
+ class_name = class_names.get(cls_idx, None)
35
+
36
+ if class_name:
37
+ class_counts[class_name] += 1
38
+ else:
39
+ st.warning(f"Unknown class index detected: {cls_idx}")
40
+ return class_counts
41
+
42
+
43
+ def run_inference(file):
44
+ file_type = file.type.split('/')[0]
45
+
46
+ if file_type == 'image':
47
+ image = Image.open(file)
48
+ st.image(image, caption="Uploaded Image", use_container_width=True)
49
+ status_placeholder.write("Processing...Please wait....")
50
+ results = model.predict(source=image, save=False)
51
+
52
+ class_names = model.names
53
+ counts = count_objects(results, class_names)
54
+ st.write("Detected objects:")
55
+ for obj, count in counts.items():
56
+ st.write(f"{obj}: {count}")
57
+ status_placeholder.empty()
58
+
59
+ if(radio_button2=="Yes"):
60
+ status_placeholder.write("Processing...")
61
+ st.image(results[0].plot(), caption="Detected Objects", use_container_width=True)
62
+ status_placeholder.empty()
63
+
64
+
65
+
66
+ # elif file_type == 'video':
67
+ # temp_file = f"temp_{file.name}"
68
+ # compressed_file = f"compressed_{file.name}"
69
+
70
+ # # Save the uploaded video to a temporary file
71
+ # with open(temp_file, "wb") as f:
72
+ # f.write(file.getbuffer())
73
+
74
+ # # Compress the video
75
+ # st.write("Compressing video...")
76
+ # clip = VideoFileClip(temp_file)
77
+ # clip.write_videofile(compressed_file, codec="libx264", audio_codec="aac")
78
+ # clip.close()
79
+ # st.write("Compression complete. Processing video...")
80
+
81
+ # # Process the compressed video
82
+ # cap = cv2.VideoCapture(compressed_file)
83
+ # stframe = st.empty()
84
+ # total_counts = {name: 0 for name in model.names}
85
+
86
+ # while cap.isOpened():
87
+ # ret, frame = cap.read()
88
+ # if not ret:
89
+ # break
90
+
91
+ # # Perform inference on each video frame
92
+ # results = model.predict(source=frame, save=False)
93
+
94
+ # # Count the objects in the frame
95
+ # frame_counts = {model.names[int(box.cls[0])]: 0 for box in results[0].boxes}
96
+ # for box in results[0].boxes:
97
+ # class_name = model.names[int(box.cls[0])]
98
+ # frame_counts[class_name] += 1
99
+ # for obj, count in frame_counts.items():
100
+ # total_counts[obj] += count
101
+
102
+ # # Display the processed video frame
103
+ # stframe.image(results[0].plot(), channels="BGR", use_container_width=True)
104
+
105
+ # cap.release()
106
+ # st.write("Video processing complete.")
107
+
108
+ # # Display total counts
109
+ # st.write("Total detected objects in the video:")
110
+ # for obj, count in total_counts.items():
111
+ # st.write(f"{obj}: {count}")
112
+
113
+
114
+
115
+ if file is not None:
116
+ run_inference(file)
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ streamlit==1.41.1
2
+ opencv-python==4.10.0.84
3
+ pillow==11.0.0
4
+ torch==2.5.1
5
+ torchvision==0.20.1
6
+ ultralytics==8.3.51
7
+ moviepy
train_15_best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d15cbb17afd7f09af9e68e018179c80c78b2a1a94181d4b3b1fe7a573f52c05
3
+ size 23001379
train_17_best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:241c458ad8511c167e0a4ac16e8eb9f44687481d3353b0ee2cd803c2c2eab86c
3
+ size 52513355