Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
import cv2 | |
from ultralytics import YOLO | |
with st.sidebar: | |
st.title("Control panel") | |
file = st.file_uploader("Choose an image or a video", type=["png", "jpg", "jpeg", "mp4"]) | |
radio_button1 = st.radio("Model", ["model_train_17", "model_train_15"]) | |
radio_button2=st.radio("Visualize",["No","Yes"]) | |
st.header("Palm Tree Detection") | |
st.write( | |
'<p style="font-family: Arial, sans-serif; font-size: px; color: black; font-style: italic;">Counting the number of palm and coconut trees</p>', | |
unsafe_allow_html=True | |
) | |
status_placeholder = st.empty() | |
if radio_button1 == "model_train_17": | |
model = YOLO(r'C:\Users\Tectoro\Desktop\Palm tree detection\train_17_best.pt') | |
elif radio_button1 == "model_train_15": | |
model = YOLO(r'C:\Users\Tectoro\Desktop\Palm tree detection\train_15_best.pt') | |
def count_objects(results, class_names): | |
"""Count objects detected for each class.""" | |
class_counts = {name: 0 for name in class_names.values()} | |
for box in results[0].boxes: | |
cls_idx = int(box.cls[0]) | |
class_name = class_names.get(cls_idx, None) | |
if class_name: | |
class_counts[class_name] += 1 | |
else: | |
st.warning(f"Unknown class index detected: {cls_idx}") | |
return class_counts | |
def run_inference(file): | |
file_type = file.type.split('/')[0] | |
if file_type == 'image': | |
image = Image.open(file) | |
st.image(image, caption="Uploaded Image", use_container_width=True) | |
status_placeholder.write("Processing...Please wait....") | |
results = model.predict(source=image, save=False) | |
class_names = model.names | |
counts = count_objects(results, class_names) | |
st.write("Detected objects:") | |
for obj, count in counts.items(): | |
st.write(f"{obj}: {count}") | |
status_placeholder.empty() | |
if(radio_button2=="Yes"): | |
status_placeholder.write("Processing...") | |
st.image(results[0].plot(), caption="Detected Objects", use_container_width=True) | |
status_placeholder.empty() | |
# elif file_type == 'video': | |
# temp_file = f"temp_{file.name}" | |
# compressed_file = f"compressed_{file.name}" | |
# # Save the uploaded video to a temporary file | |
# with open(temp_file, "wb") as f: | |
# f.write(file.getbuffer()) | |
# # Compress the video | |
# st.write("Compressing video...") | |
# clip = VideoFileClip(temp_file) | |
# clip.write_videofile(compressed_file, codec="libx264", audio_codec="aac") | |
# clip.close() | |
# st.write("Compression complete. Processing video...") | |
# # Process the compressed video | |
# cap = cv2.VideoCapture(compressed_file) | |
# stframe = st.empty() | |
# total_counts = {name: 0 for name in model.names} | |
# while cap.isOpened(): | |
# ret, frame = cap.read() | |
# if not ret: | |
# break | |
# # Perform inference on each video frame | |
# results = model.predict(source=frame, save=False) | |
# # Count the objects in the frame | |
# frame_counts = {model.names[int(box.cls[0])]: 0 for box in results[0].boxes} | |
# for box in results[0].boxes: | |
# class_name = model.names[int(box.cls[0])] | |
# frame_counts[class_name] += 1 | |
# for obj, count in frame_counts.items(): | |
# total_counts[obj] += count | |
# # Display the processed video frame | |
# stframe.image(results[0].plot(), channels="BGR", use_container_width=True) | |
# cap.release() | |
# st.write("Video processing complete.") | |
# # Display total counts | |
# st.write("Total detected objects in the video:") | |
# for obj, count in total_counts.items(): | |
# st.write(f"{obj}: {count}") | |
if file is not None: | |
run_inference(file) | |