Spaces:
Configuration error
Configuration error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import logging | |
| from typing import List, Optional, Tuple | |
| import torch | |
| from fvcore.nn import sigmoid_focal_loss_jit | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from detectron2.layers import ShapeSpec, batched_nms | |
| from detectron2.structures import Boxes, ImageList, Instances, pairwise_point_box_distance | |
| from detectron2.utils.events import get_event_storage | |
| from ..anchor_generator import DefaultAnchorGenerator | |
| from ..backbone import Backbone | |
| from ..box_regression import Box2BoxTransformLinear, _dense_box_regression_loss | |
| from .dense_detector import DenseDetector | |
| from .retinanet import RetinaNetHead | |
| __all__ = ["FCOS"] | |
| logger = logging.getLogger(__name__) | |
| class FCOS(DenseDetector): | |
| """ | |
| Implement FCOS in :paper:`fcos`. | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| backbone: Backbone, | |
| head: nn.Module, | |
| head_in_features: Optional[List[str]] = None, | |
| box2box_transform=None, | |
| num_classes, | |
| center_sampling_radius: float = 1.5, | |
| focal_loss_alpha=0.25, | |
| focal_loss_gamma=2.0, | |
| test_score_thresh=0.2, | |
| test_topk_candidates=1000, | |
| test_nms_thresh=0.6, | |
| max_detections_per_image=100, | |
| pixel_mean, | |
| pixel_std, | |
| ): | |
| """ | |
| Args: | |
| center_sampling_radius: radius of the "center" of a groundtruth box, | |
| within which all anchor points are labeled positive. | |
| Other arguments mean the same as in :class:`RetinaNet`. | |
| """ | |
| super().__init__( | |
| backbone, head, head_in_features, pixel_mean=pixel_mean, pixel_std=pixel_std | |
| ) | |
| self.num_classes = num_classes | |
| # FCOS uses one anchor point per location. | |
| # We represent the anchor point by a box whose size equals the anchor stride. | |
| feature_shapes = backbone.output_shape() | |
| fpn_strides = [feature_shapes[k].stride for k in self.head_in_features] | |
| self.anchor_generator = DefaultAnchorGenerator( | |
| sizes=[[k] for k in fpn_strides], aspect_ratios=[1.0], strides=fpn_strides | |
| ) | |
| # FCOS parameterizes box regression by a linear transform, | |
| # where predictions are normalized by anchor stride (equal to anchor size). | |
| if box2box_transform is None: | |
| box2box_transform = Box2BoxTransformLinear(normalize_by_size=True) | |
| self.box2box_transform = box2box_transform | |
| self.center_sampling_radius = float(center_sampling_radius) | |
| # Loss parameters: | |
| self.focal_loss_alpha = focal_loss_alpha | |
| self.focal_loss_gamma = focal_loss_gamma | |
| # Inference parameters: | |
| self.test_score_thresh = test_score_thresh | |
| self.test_topk_candidates = test_topk_candidates | |
| self.test_nms_thresh = test_nms_thresh | |
| self.max_detections_per_image = max_detections_per_image | |
| def forward_training(self, images, features, predictions, gt_instances): | |
| # Transpose the Hi*Wi*A dimension to the middle: | |
| pred_logits, pred_anchor_deltas, pred_centerness = self._transpose_dense_predictions( | |
| predictions, [self.num_classes, 4, 1] | |
| ) | |
| anchors = self.anchor_generator(features) | |
| gt_labels, gt_boxes = self.label_anchors(anchors, gt_instances) | |
| return self.losses( | |
| anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes, pred_centerness | |
| ) | |
| def _match_anchors(self, gt_boxes: Boxes, anchors: List[Boxes]): | |
| """ | |
| Match ground-truth boxes to a set of multi-level anchors. | |
| Args: | |
| gt_boxes: Ground-truth boxes from instances of an image. | |
| anchors: List of anchors for each feature map (of different scales). | |
| Returns: | |
| torch.Tensor | |
| A tensor of shape `(M, R)`, given `M` ground-truth boxes and total | |
| `R` anchor points from all feature levels, indicating the quality | |
| of match between m-th box and r-th anchor. Higher value indicates | |
| better match. | |
| """ | |
| # Naming convention: (M = ground-truth boxes, R = anchor points) | |
| # Anchor points are represented as square boxes of size = stride. | |
| num_anchors_per_level = [len(x) for x in anchors] | |
| anchors = Boxes.cat(anchors) # (R, 4) | |
| anchor_centers = anchors.get_centers() # (R, 2) | |
| anchor_sizes = anchors.tensor[:, 2] - anchors.tensor[:, 0] # (R, ) | |
| lower_bound = anchor_sizes * 4 | |
| lower_bound[: num_anchors_per_level[0]] = 0 | |
| upper_bound = anchor_sizes * 8 | |
| upper_bound[-num_anchors_per_level[-1] :] = float("inf") | |
| gt_centers = gt_boxes.get_centers() | |
| # FCOS with center sampling: anchor point must be close enough to | |
| # ground-truth box center. | |
| center_dists = (anchor_centers[None, :, :] - gt_centers[:, None, :]).abs_() | |
| sampling_regions = self.center_sampling_radius * anchor_sizes[None, :] | |
| match_quality_matrix = center_dists.max(dim=2).values < sampling_regions | |
| pairwise_dist = pairwise_point_box_distance(anchor_centers, gt_boxes) | |
| pairwise_dist = pairwise_dist.permute(1, 0, 2) # (M, R, 4) | |
| # The original FCOS anchor matching rule: anchor point must be inside GT. | |
| match_quality_matrix &= pairwise_dist.min(dim=2).values > 0 | |
| # Multilevel anchor matching in FCOS: each anchor is only responsible | |
| # for certain scale range. | |
| pairwise_dist = pairwise_dist.max(dim=2).values | |
| match_quality_matrix &= (pairwise_dist > lower_bound[None, :]) & ( | |
| pairwise_dist < upper_bound[None, :] | |
| ) | |
| # Match the GT box with minimum area, if there are multiple GT matches. | |
| gt_areas = gt_boxes.area() # (M, ) | |
| match_quality_matrix = match_quality_matrix.to(torch.float32) | |
| match_quality_matrix *= 1e8 - gt_areas[:, None] | |
| return match_quality_matrix # (M, R) | |
| def label_anchors(self, anchors: List[Boxes], gt_instances: List[Instances]): | |
| """ | |
| Same interface as :meth:`RetinaNet.label_anchors`, but implemented with FCOS | |
| anchor matching rule. | |
| Unlike RetinaNet, there are no ignored anchors. | |
| """ | |
| gt_labels, matched_gt_boxes = [], [] | |
| for inst in gt_instances: | |
| if len(inst) > 0: | |
| match_quality_matrix = self._match_anchors(inst.gt_boxes, anchors) | |
| # Find matched ground-truth box per anchor. Un-matched anchors are | |
| # assigned -1. This is equivalent to using an anchor matcher as used | |
| # in R-CNN/RetinaNet: `Matcher(thresholds=[1e-5], labels=[0, 1])` | |
| match_quality, matched_idxs = match_quality_matrix.max(dim=0) | |
| matched_idxs[match_quality < 1e-5] = -1 | |
| matched_gt_boxes_i = inst.gt_boxes.tensor[matched_idxs.clip(min=0)] | |
| gt_labels_i = inst.gt_classes[matched_idxs.clip(min=0)] | |
| # Anchors with matched_idxs = -1 are labeled background. | |
| gt_labels_i[matched_idxs < 0] = self.num_classes | |
| else: | |
| matched_gt_boxes_i = torch.zeros_like(Boxes.cat(anchors).tensor) | |
| gt_labels_i = torch.full( | |
| (len(matched_gt_boxes_i),), | |
| fill_value=self.num_classes, | |
| dtype=torch.long, | |
| device=matched_gt_boxes_i.device, | |
| ) | |
| gt_labels.append(gt_labels_i) | |
| matched_gt_boxes.append(matched_gt_boxes_i) | |
| return gt_labels, matched_gt_boxes | |
| def losses( | |
| self, anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes, pred_centerness | |
| ): | |
| """ | |
| This method is almost identical to :meth:`RetinaNet.losses`, with an extra | |
| "loss_centerness" in the returned dict. | |
| """ | |
| num_images = len(gt_labels) | |
| gt_labels = torch.stack(gt_labels) # (M, R) | |
| pos_mask = (gt_labels >= 0) & (gt_labels != self.num_classes) | |
| num_pos_anchors = pos_mask.sum().item() | |
| get_event_storage().put_scalar("num_pos_anchors", num_pos_anchors / num_images) | |
| normalizer = self._ema_update("loss_normalizer", max(num_pos_anchors, 1), 300) | |
| # classification and regression loss | |
| gt_labels_target = F.one_hot(gt_labels, num_classes=self.num_classes + 1)[ | |
| :, :, :-1 | |
| ] # no loss for the last (background) class | |
| loss_cls = sigmoid_focal_loss_jit( | |
| torch.cat(pred_logits, dim=1), | |
| gt_labels_target.to(pred_logits[0].dtype), | |
| alpha=self.focal_loss_alpha, | |
| gamma=self.focal_loss_gamma, | |
| reduction="sum", | |
| ) | |
| loss_box_reg = _dense_box_regression_loss( | |
| anchors, | |
| self.box2box_transform, | |
| pred_anchor_deltas, | |
| gt_boxes, | |
| pos_mask, | |
| box_reg_loss_type="giou", | |
| ) | |
| ctrness_targets = self.compute_ctrness_targets(anchors, gt_boxes) # (M, R) | |
| pred_centerness = torch.cat(pred_centerness, dim=1).squeeze(dim=2) # (M, R) | |
| ctrness_loss = F.binary_cross_entropy_with_logits( | |
| pred_centerness[pos_mask], ctrness_targets[pos_mask], reduction="sum" | |
| ) | |
| return { | |
| "loss_fcos_cls": loss_cls / normalizer, | |
| "loss_fcos_loc": loss_box_reg / normalizer, | |
| "loss_fcos_ctr": ctrness_loss / normalizer, | |
| } | |
| def compute_ctrness_targets(self, anchors: List[Boxes], gt_boxes: List[torch.Tensor]): | |
| anchors = Boxes.cat(anchors).tensor # Rx4 | |
| reg_targets = [self.box2box_transform.get_deltas(anchors, m) for m in gt_boxes] | |
| reg_targets = torch.stack(reg_targets, dim=0) # NxRx4 | |
| if len(reg_targets) == 0: | |
| return reg_targets.new_zeros(len(reg_targets)) | |
| left_right = reg_targets[:, :, [0, 2]] | |
| top_bottom = reg_targets[:, :, [1, 3]] | |
| ctrness = (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * ( | |
| top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0] | |
| ) | |
| return torch.sqrt(ctrness) | |
| def forward_inference( | |
| self, | |
| images: ImageList, | |
| features: List[torch.Tensor], | |
| predictions: List[List[torch.Tensor]], | |
| ): | |
| pred_logits, pred_anchor_deltas, pred_centerness = self._transpose_dense_predictions( | |
| predictions, [self.num_classes, 4, 1] | |
| ) | |
| anchors = self.anchor_generator(features) | |
| results: List[Instances] = [] | |
| for img_idx, image_size in enumerate(images.image_sizes): | |
| scores_per_image = [ | |
| # Multiply and sqrt centerness & classification scores | |
| # (See eqn. 4 in https://arxiv.org/abs/2006.09214) | |
| torch.sqrt(x[img_idx].sigmoid_() * y[img_idx].sigmoid_()) | |
| for x, y in zip(pred_logits, pred_centerness) | |
| ] | |
| deltas_per_image = [x[img_idx] for x in pred_anchor_deltas] | |
| results_per_image = self.inference_single_image( | |
| anchors, scores_per_image, deltas_per_image, image_size | |
| ) | |
| results.append(results_per_image) | |
| return results | |
| def inference_single_image( | |
| self, | |
| anchors: List[Boxes], | |
| box_cls: List[torch.Tensor], | |
| box_delta: List[torch.Tensor], | |
| image_size: Tuple[int, int], | |
| ): | |
| """ | |
| Identical to :meth:`RetinaNet.inference_single_image. | |
| """ | |
| pred = self._decode_multi_level_predictions( | |
| anchors, | |
| box_cls, | |
| box_delta, | |
| self.test_score_thresh, | |
| self.test_topk_candidates, | |
| image_size, | |
| ) | |
| keep = batched_nms( | |
| pred.pred_boxes.tensor, pred.scores, pred.pred_classes, self.test_nms_thresh | |
| ) | |
| return pred[keep[: self.max_detections_per_image]] | |
| class FCOSHead(RetinaNetHead): | |
| """ | |
| The head used in :paper:`fcos`. It adds an additional centerness | |
| prediction branch on top of :class:`RetinaNetHead`. | |
| """ | |
| def __init__(self, *, input_shape: List[ShapeSpec], conv_dims: List[int], **kwargs): | |
| super().__init__(input_shape=input_shape, conv_dims=conv_dims, num_anchors=1, **kwargs) | |
| # Unlike original FCOS, we do not add an additional learnable scale layer | |
| # because it's found to have no benefits after normalizing regression targets by stride. | |
| self._num_features = len(input_shape) | |
| self.ctrness = nn.Conv2d(conv_dims[-1], 1, kernel_size=3, stride=1, padding=1) | |
| torch.nn.init.normal_(self.ctrness.weight, std=0.01) | |
| torch.nn.init.constant_(self.ctrness.bias, 0) | |
| def forward(self, features): | |
| assert len(features) == self._num_features | |
| logits = [] | |
| bbox_reg = [] | |
| ctrness = [] | |
| for feature in features: | |
| logits.append(self.cls_score(self.cls_subnet(feature))) | |
| bbox_feature = self.bbox_subnet(feature) | |
| bbox_reg.append(self.bbox_pred(bbox_feature)) | |
| ctrness.append(self.ctrness(bbox_feature)) | |
| return logits, bbox_reg, ctrness | |