Spaces:
Configuration error
Configuration error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # ------------------------------------------------------------------------------ | |
| # Copyright (c) Microsoft | |
| # Licensed under the MIT License. | |
| # Written by Bin Xiao ([email protected]) | |
| # Modified by Bowen Cheng ([email protected]) | |
| # Adapted from https://github.com/HRNet/Higher-HRNet-Human-Pose-Estimation/blob/master/lib/models/pose_higher_hrnet.py # noqa | |
| # ------------------------------------------------------------------------------ | |
| from __future__ import absolute_import, division, print_function | |
| import logging | |
| import torch.nn as nn | |
| from detectron2.layers import ShapeSpec | |
| from detectron2.modeling.backbone import BACKBONE_REGISTRY | |
| from detectron2.modeling.backbone.backbone import Backbone | |
| BN_MOMENTUM = 0.1 | |
| logger = logging.getLogger(__name__) | |
| __all__ = ["build_pose_hrnet_backbone", "PoseHigherResolutionNet"] | |
| def conv3x3(in_planes, out_planes, stride=1): | |
| """3x3 convolution with padding""" | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
| class BasicBlock(nn.Module): | |
| expansion = 1 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None): | |
| super(BasicBlock, self).__init__() | |
| self.conv1 = conv3x3(inplanes, planes, stride) | |
| self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.conv2 = conv3x3(planes, planes) | |
| self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class Bottleneck(nn.Module): | |
| expansion = 4 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None): | |
| super(Bottleneck, self).__init__() | |
| self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
| self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
| self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
| self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) | |
| self.bn3 = nn.BatchNorm2d(planes * self.expansion, momentum=BN_MOMENTUM) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| out = self.relu(out) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class HighResolutionModule(nn.Module): | |
| """HighResolutionModule | |
| Building block of the PoseHigherResolutionNet (see lower) | |
| arXiv: https://arxiv.org/abs/1908.10357 | |
| Args: | |
| num_branches (int): number of branches of the modyle | |
| blocks (str): type of block of the module | |
| num_blocks (int): number of blocks of the module | |
| num_inchannels (int): number of input channels of the module | |
| num_channels (list): number of channels of each branch | |
| multi_scale_output (bool): only used by the last module of PoseHigherResolutionNet | |
| """ | |
| def __init__( | |
| self, | |
| num_branches, | |
| blocks, | |
| num_blocks, | |
| num_inchannels, | |
| num_channels, | |
| multi_scale_output=True, | |
| ): | |
| super(HighResolutionModule, self).__init__() | |
| self._check_branches(num_branches, blocks, num_blocks, num_inchannels, num_channels) | |
| self.num_inchannels = num_inchannels | |
| self.num_branches = num_branches | |
| self.multi_scale_output = multi_scale_output | |
| self.branches = self._make_branches(num_branches, blocks, num_blocks, num_channels) | |
| self.fuse_layers = self._make_fuse_layers() | |
| self.relu = nn.ReLU(True) | |
| def _check_branches(self, num_branches, blocks, num_blocks, num_inchannels, num_channels): | |
| if num_branches != len(num_blocks): | |
| error_msg = "NUM_BRANCHES({}) <> NUM_BLOCKS({})".format(num_branches, len(num_blocks)) | |
| logger.error(error_msg) | |
| raise ValueError(error_msg) | |
| if num_branches != len(num_channels): | |
| error_msg = "NUM_BRANCHES({}) <> NUM_CHANNELS({})".format( | |
| num_branches, len(num_channels) | |
| ) | |
| logger.error(error_msg) | |
| raise ValueError(error_msg) | |
| if num_branches != len(num_inchannels): | |
| error_msg = "NUM_BRANCHES({}) <> NUM_INCHANNELS({})".format( | |
| num_branches, len(num_inchannels) | |
| ) | |
| logger.error(error_msg) | |
| raise ValueError(error_msg) | |
| def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1): | |
| downsample = None | |
| if ( | |
| stride != 1 | |
| or self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion | |
| ): | |
| downsample = nn.Sequential( | |
| nn.Conv2d( | |
| self.num_inchannels[branch_index], | |
| num_channels[branch_index] * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False, | |
| ), | |
| nn.BatchNorm2d(num_channels[branch_index] * block.expansion, momentum=BN_MOMENTUM), | |
| ) | |
| layers = [] | |
| layers.append( | |
| block(self.num_inchannels[branch_index], num_channels[branch_index], stride, downsample) | |
| ) | |
| self.num_inchannels[branch_index] = num_channels[branch_index] * block.expansion | |
| for _ in range(1, num_blocks[branch_index]): | |
| layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index])) | |
| return nn.Sequential(*layers) | |
| def _make_branches(self, num_branches, block, num_blocks, num_channels): | |
| branches = [] | |
| for i in range(num_branches): | |
| branches.append(self._make_one_branch(i, block, num_blocks, num_channels)) | |
| return nn.ModuleList(branches) | |
| def _make_fuse_layers(self): | |
| if self.num_branches == 1: | |
| return None | |
| num_branches = self.num_branches | |
| num_inchannels = self.num_inchannels | |
| fuse_layers = [] | |
| for i in range(num_branches if self.multi_scale_output else 1): | |
| fuse_layer = [] | |
| for j in range(num_branches): | |
| if j > i: | |
| fuse_layer.append( | |
| nn.Sequential( | |
| nn.Conv2d(num_inchannels[j], num_inchannels[i], 1, 1, 0, bias=False), | |
| nn.BatchNorm2d(num_inchannels[i]), | |
| nn.Upsample(scale_factor=2 ** (j - i), mode="nearest"), | |
| ) | |
| ) | |
| elif j == i: | |
| fuse_layer.append(None) | |
| else: | |
| conv3x3s = [] | |
| for k in range(i - j): | |
| if k == i - j - 1: | |
| num_outchannels_conv3x3 = num_inchannels[i] | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d( | |
| num_inchannels[j], | |
| num_outchannels_conv3x3, | |
| 3, | |
| 2, | |
| 1, | |
| bias=False, | |
| ), | |
| nn.BatchNorm2d(num_outchannels_conv3x3), | |
| ) | |
| ) | |
| else: | |
| num_outchannels_conv3x3 = num_inchannels[j] | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d( | |
| num_inchannels[j], | |
| num_outchannels_conv3x3, | |
| 3, | |
| 2, | |
| 1, | |
| bias=False, | |
| ), | |
| nn.BatchNorm2d(num_outchannels_conv3x3), | |
| nn.ReLU(True), | |
| ) | |
| ) | |
| fuse_layer.append(nn.Sequential(*conv3x3s)) | |
| fuse_layers.append(nn.ModuleList(fuse_layer)) | |
| return nn.ModuleList(fuse_layers) | |
| def get_num_inchannels(self): | |
| return self.num_inchannels | |
| def forward(self, x): | |
| if self.num_branches == 1: | |
| return [self.branches[0](x[0])] | |
| for i in range(self.num_branches): | |
| x[i] = self.branches[i](x[i]) | |
| x_fuse = [] | |
| for i in range(len(self.fuse_layers)): | |
| y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) | |
| for j in range(1, self.num_branches): | |
| if i == j: | |
| y = y + x[j] | |
| else: | |
| z = self.fuse_layers[i][j](x[j])[:, :, : y.shape[2], : y.shape[3]] | |
| y = y + z | |
| x_fuse.append(self.relu(y)) | |
| return x_fuse | |
| blocks_dict = {"BASIC": BasicBlock, "BOTTLENECK": Bottleneck} | |
| class PoseHigherResolutionNet(Backbone): | |
| """PoseHigherResolutionNet | |
| Composed of several HighResolutionModule tied together with ConvNets | |
| Adapted from the GitHub version to fit with HRFPN and the Detectron2 infrastructure | |
| arXiv: https://arxiv.org/abs/1908.10357 | |
| """ | |
| def __init__(self, cfg, **kwargs): | |
| self.inplanes = cfg.MODEL.HRNET.STEM_INPLANES | |
| super(PoseHigherResolutionNet, self).__init__() | |
| # stem net | |
| self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | |
| self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
| self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.layer1 = self._make_layer(Bottleneck, 64, 4) | |
| self.stage2_cfg = cfg.MODEL.HRNET.STAGE2 | |
| num_channels = self.stage2_cfg.NUM_CHANNELS | |
| block = blocks_dict[self.stage2_cfg.BLOCK] | |
| num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
| self.transition1 = self._make_transition_layer([256], num_channels) | |
| self.stage2, pre_stage_channels = self._make_stage(self.stage2_cfg, num_channels) | |
| self.stage3_cfg = cfg.MODEL.HRNET.STAGE3 | |
| num_channels = self.stage3_cfg.NUM_CHANNELS | |
| block = blocks_dict[self.stage3_cfg.BLOCK] | |
| num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
| self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) | |
| self.stage3, pre_stage_channels = self._make_stage(self.stage3_cfg, num_channels) | |
| self.stage4_cfg = cfg.MODEL.HRNET.STAGE4 | |
| num_channels = self.stage4_cfg.NUM_CHANNELS | |
| block = blocks_dict[self.stage4_cfg.BLOCK] | |
| num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
| self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) | |
| self.stage4, pre_stage_channels = self._make_stage( | |
| self.stage4_cfg, num_channels, multi_scale_output=True | |
| ) | |
| self._out_features = [] | |
| self._out_feature_channels = {} | |
| self._out_feature_strides = {} | |
| for i in range(cfg.MODEL.HRNET.STAGE4.NUM_BRANCHES): | |
| self._out_features.append("p%d" % (i + 1)) | |
| self._out_feature_channels.update( | |
| {self._out_features[-1]: cfg.MODEL.HRNET.STAGE4.NUM_CHANNELS[i]} | |
| ) | |
| self._out_feature_strides.update({self._out_features[-1]: 1}) | |
| def _get_deconv_cfg(self, deconv_kernel): | |
| if deconv_kernel == 4: | |
| padding = 1 | |
| output_padding = 0 | |
| elif deconv_kernel == 3: | |
| padding = 1 | |
| output_padding = 1 | |
| elif deconv_kernel == 2: | |
| padding = 0 | |
| output_padding = 0 | |
| return deconv_kernel, padding, output_padding | |
| def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): | |
| num_branches_cur = len(num_channels_cur_layer) | |
| num_branches_pre = len(num_channels_pre_layer) | |
| transition_layers = [] | |
| for i in range(num_branches_cur): | |
| if i < num_branches_pre: | |
| if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | |
| transition_layers.append( | |
| nn.Sequential( | |
| nn.Conv2d( | |
| num_channels_pre_layer[i], | |
| num_channels_cur_layer[i], | |
| 3, | |
| 1, | |
| 1, | |
| bias=False, | |
| ), | |
| nn.BatchNorm2d(num_channels_cur_layer[i]), | |
| nn.ReLU(inplace=True), | |
| ) | |
| ) | |
| else: | |
| transition_layers.append(None) | |
| else: | |
| conv3x3s = [] | |
| for j in range(i + 1 - num_branches_pre): | |
| inchannels = num_channels_pre_layer[-1] | |
| outchannels = ( | |
| num_channels_cur_layer[i] if j == i - num_branches_pre else inchannels | |
| ) | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d(inchannels, outchannels, 3, 2, 1, bias=False), | |
| nn.BatchNorm2d(outchannels), | |
| nn.ReLU(inplace=True), | |
| ) | |
| ) | |
| transition_layers.append(nn.Sequential(*conv3x3s)) | |
| return nn.ModuleList(transition_layers) | |
| def _make_layer(self, block, planes, blocks, stride=1): | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d( | |
| self.inplanes, | |
| planes * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False, | |
| ), | |
| nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), | |
| ) | |
| layers = [] | |
| layers.append(block(self.inplanes, planes, stride, downsample)) | |
| self.inplanes = planes * block.expansion | |
| for _ in range(1, blocks): | |
| layers.append(block(self.inplanes, planes)) | |
| return nn.Sequential(*layers) | |
| def _make_stage(self, layer_config, num_inchannels, multi_scale_output=True): | |
| num_modules = layer_config["NUM_MODULES"] | |
| num_branches = layer_config["NUM_BRANCHES"] | |
| num_blocks = layer_config["NUM_BLOCKS"] | |
| num_channels = layer_config["NUM_CHANNELS"] | |
| block = blocks_dict[layer_config["BLOCK"]] | |
| modules = [] | |
| for i in range(num_modules): | |
| # multi_scale_output is only used last module | |
| if not multi_scale_output and i == num_modules - 1: | |
| reset_multi_scale_output = False | |
| else: | |
| reset_multi_scale_output = True | |
| modules.append( | |
| HighResolutionModule( | |
| num_branches, | |
| block, | |
| num_blocks, | |
| num_inchannels, | |
| num_channels, | |
| reset_multi_scale_output, | |
| ) | |
| ) | |
| num_inchannels = modules[-1].get_num_inchannels() | |
| return nn.Sequential(*modules), num_inchannels | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.relu(x) | |
| x = self.conv2(x) | |
| x = self.bn2(x) | |
| x = self.relu(x) | |
| x = self.layer1(x) | |
| x_list = [] | |
| for i in range(self.stage2_cfg.NUM_BRANCHES): | |
| if self.transition1[i] is not None: | |
| x_list.append(self.transition1[i](x)) | |
| else: | |
| x_list.append(x) | |
| y_list = self.stage2(x_list) | |
| x_list = [] | |
| for i in range(self.stage3_cfg.NUM_BRANCHES): | |
| if self.transition2[i] is not None: | |
| x_list.append(self.transition2[i](y_list[-1])) | |
| else: | |
| x_list.append(y_list[i]) | |
| y_list = self.stage3(x_list) | |
| x_list = [] | |
| for i in range(self.stage4_cfg.NUM_BRANCHES): | |
| if self.transition3[i] is not None: | |
| x_list.append(self.transition3[i](y_list[-1])) | |
| else: | |
| x_list.append(y_list[i]) | |
| y_list = self.stage4(x_list) | |
| assert len(self._out_features) == len(y_list) | |
| return dict(zip(self._out_features, y_list)) # final_outputs | |
| def build_pose_hrnet_backbone(cfg, input_shape: ShapeSpec): | |
| model = PoseHigherResolutionNet(cfg) | |
| return model | |