NikhilJoson's picture
Update app.py
10bc570 verified
import spaces
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from PIL import Image
import numpy as np
import os
import time
import re
from Upsample import RealESRGAN
import spaces # Import spaces for ZeroGPU compatibility
# Load model and processor
model_path = "deepseek-ai/Janus-Pro-7B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, language_config=language_config, trust_remote_code=True)
if torch.cuda.is_available():
vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
else:
vl_gpt = vl_gpt.to(torch.float16)
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
# SR model
sr_model = RealESRGAN(torch.device('cuda' if torch.cuda.is_available() else 'cpu'), scale=2)
sr_model.load_weights(f'weights/RealESRGAN_x2.pth', download=False)
# Patterns for detecting image generation requests
GENERATION_PATTERNS = [
r"generate (.+)",
r"create (.+)",
r"draw (.+)",
r"make (.+)",
r"show (.+)",
r"visualize (.+)",
r"imagine (.+)",
r"picture (.+)",
]
def is_generation_request(message):
"""Determine if a message is requesting image generation"""
message = message.lower().strip()
# Check if message explicitly mentions image generation
for pattern in GENERATION_PATTERNS:
match = re.match(pattern, message, re.IGNORECASE)
if match:
return True, match.group(1)
# Check for specific keywords suggesting image generation
image_keywords = ["image", "picture", "photo", "artwork", "illustration", "painting", "drawing"]
generation_verbs = ["generate", "create", "make", "produce", "show me", "draw"]
for verb in generation_verbs:
for keyword in image_keywords:
if f"{verb} {keyword}" in message or f"{verb} an {keyword}" in message or f"{verb} a {keyword}" in message:
# Extract the prompt (everything after the keyword)
pattern = f"{verb}\\s+(?:an?\\s+)?{keyword}\\s+(?:of|showing|depicting|with)?\\s*(.*)"
match = re.search(pattern, message, re.IGNORECASE)
if match and match.group(1):
return True, match.group(1)
else:
# If we can't extract a specific prompt, use the whole message
return True, message
return False, None
@torch.inference_mode()
@spaces.GPU(duration=120)
# Unified chat function that handles both image understanding and generation
def unified_chat(image, message, chat_history, seed, top_p, temperature, cfg_weight, t2i_temperature, progress=gr.Progress(track_tqdm=True)):
# Clear CUDA cache before generating
torch.cuda.empty_cache()
# Check if this is an image generation request
is_gen_request, extracted_prompt = is_generation_request(message)
if is_gen_request:
# Extract the prompt directly
context_prompt = extracted_prompt
# Generate images with full conversation history
generated_images = generate_image(prompt=context_prompt, conversation_history=chat_history, # Pass the full chat history
seed=seed, guidance=cfg_weight, t2i_temperature=t2i_temperature)
# Create a response that includes the generated images
response = f"I've generated the following images based on: '{extracted_prompt}'"
# Add the images to the chat as the bot's response
chat_history.append((message, response))
# Return the message, updated history, maintained image context, and generated images
return "", chat_history, image, generated_images
# Rest of the function remains the same...
# set seed
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
# Process the conversation history and add current message
conversation = []
# Check if we have existing history
if chat_history:
# Add previous conversation turns
for user_msg, assistant_msg in chat_history:
conversation.append({
"role": "<|User|>",
"content": user_msg,
"images": [], # No images for previous turns
})
conversation.append({
"role": "<|Assistant|>",
"content": assistant_msg,
})
# Add the current user message with image (if provided)
user_content = message
images_list = []
# Only include image placeholder if image is provided or this is the first message
if image is not None:
user_content = f"<image_placeholder>\n{message}"
images_list = [image]
conversation.append({
"role": "<|User|>",
"content": user_content,
"images": images_list,
})
conversation.append({"role": "<|Assistant|>", "content": ""})
# Process images (if any)
pil_images = []
if image is not None:
pil_images = [Image.fromarray(image)]
prepare_inputs = vl_chat_processor(conversations=conversation, images=pil_images, force_batchify=True
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
outputs = vl_gpt.language_model.generate(inputs_embeds=inputs_embeds, attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id, max_new_tokens=512, temperature=temperature, top_p=top_p,
do_sample=False if temperature == 0 else True, use_cache=True,)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
# Update chat history
chat_history.append((message, answer))
# Keep the last uploaded image in context
return "", chat_history, image, None
def generate(input_ids, width, height, temperature: float = 1, parallel_size: int = 5, cfg_weight: float = 5,
image_token_num_per_image: int = 576, patch_size: int = 16, progress=gr.Progress(track_tqdm=True)):
# Clear CUDA cache before generating
torch.cuda.empty_cache()
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)
pkv = None
for i in range(image_token_num_per_image):
with torch.no_grad():
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv)
pkv = outputs.past_key_values
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, width // patch_size, height // patch_size])
return generated_tokens.to(dtype=torch.int), patches
def unpack(dec, width, height, parallel_size=5):
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
return visual_img
@torch.inference_mode()
@spaces.GPU(duration=120) # Specify a duration to avoid timeout
def generate_image(prompt, conversation_history=None, # Add conversation history parameter
seed=None, guidance=5, t2i_temperature=1.0, progress=gr.Progress(track_tqdm=True)):
# Clear CUDA cache and avoid tracking gradients
torch.cuda.empty_cache()
# Set the seed for reproducible results
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
width = 384
height = 384
parallel_size = 1
# Prepare a richer context-aware prompt
full_prompt = prompt
# Add conversation history context if available
if conversation_history and len(conversation_history) > 0:
# Build a context string from the last few conversation turns
# Limit to last 3-5 turns to keep prompt manageable
recent_turns = conversation_history[-5:] if len(conversation_history) > 5 else conversation_history
context_parts = []
for user_msg, assistant_msg in recent_turns:
if user_msg and user_msg.strip():
context_parts.append(f"User: {user_msg}")
if assistant_msg and assistant_msg.strip():
context_parts.append(f"Assistant: {assistant_msg}")
conversation_context = "\n".join(context_parts)
# Combine conversation context with the prompt
full_prompt = f"Based on this conversation:\n{conversation_context}\n\nGenerate: {prompt}"
with torch.no_grad():
messages = [{'role': '<|User|>', 'content': full_prompt},
{'role': '<|Assistant|>', 'content': ''}]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
sft_format=vl_chat_processor.sft_format, system_prompt='')
text = text + vl_chat_processor.image_start_tag
input_ids = torch.LongTensor(tokenizer.encode(text))
output, patches = generate(input_ids,
width // 16 * 16,
height // 16 * 16,
cfg_weight=guidance,
parallel_size=parallel_size,
temperature=t2i_temperature)
images = unpack(patches,
width // 16 * 16,
height // 16 * 16,
parallel_size=parallel_size)
stime = time.time()
ret_images = [image_upsample(Image.fromarray(images[i])) for i in range(parallel_size)]
print(f'upsample time: {time.time() - stime}')
return ret_images
@spaces.GPU(duration=60)
def image_upsample(img: Image.Image) -> Image.Image:
if img is None:
raise Exception("Image not uploaded")
width, height = img.size
if width >= 4096 or height >= 4096:
raise Exception("The image is too large.")
global sr_model
result = sr_model.predict(img.convert('RGB'))
return result
# Helper function to add uploaded image to the chat context
def add_image_to_chat(image, chat_history):
return image, chat_history
# Helper function to clear chat history but maintain the image
def clear_chat(image):
return [], image, None
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Janus Pro 7B - Unified Chat Interface with Context Retention")
gr.Markdown("""
## Description
This space showcases Janus Pro 7B, a unified multimodal AI model capable of both image understanding and text-to-image generation within a seamless conversational experience.
Unlike traditional models that treat these tasks separately, Janus Pro Chat maintains the same context across interactions, allowing for a more coherent and dynamic dialogue.
You can chat with it about images, generate new ones from text prompts, and receive responses that are aware of the ongoing conversation—enhancing both usability and realism in multimodal AI.
""")
gr.Markdown("""
### Tips:
1. Upload an image to discuss it
2. Type commands like "generate [description]" to create images
3. Continue chatting about uploaded or generated images
4. Use natural language like "show me a sunset" or "create a portrait"
""")
# State variables to maintain context
chat_history = gr.State([])
current_image = gr.State(None)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(label="Upload Image (optional)")
upload_button = gr.Button("Add Image to Chat")
with gr.Accordion("Chat Options", open=False):
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
with gr.Accordion("Image Generation Options", open=False):
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
t2i_temperature_input = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="Temperature")
clear_button = gr.Button("Clear Chat")
with gr.Column(scale=2):
chat_interface = gr.Chatbot(label="Chat History", height=500)
message_input = gr.Textbox(
label="Your message",
placeholder="Ask about an image, continue chatting, or generate new images by typing 'generate [description]'",
lines=2
)
chat_button = gr.Button("Send")
generated_images = gr.Gallery(label="Generated Images", visible=True, columns=2, rows=2)
# Chat interface interactions
upload_button.click(add_image_to_chat, inputs=[image_input, chat_history], outputs=[current_image, chat_history])
chat_button.click(
unified_chat,
inputs=[current_image, message_input, chat_interface, und_seed_input, top_p, temperature, cfg_weight_input, t2i_temperature_input],
outputs=[message_input, chat_interface, current_image, generated_images]
)
# Also trigger on Enter key
message_input.submit(
unified_chat,
inputs=[current_image, message_input, chat_interface, und_seed_input, top_p, temperature, cfg_weight_input, t2i_temperature_input],
outputs=[message_input, chat_interface, current_image, generated_images]
)
clear_button.click(
clear_chat,
inputs=[current_image],
outputs=[chat_interface, current_image, generated_images]
)
# Examples for the unified interface
examples = gr.Examples(
label="Example queries",
examples=[
["What's in this image?"],
["Generate a cute kitten with big eyes"],
["Show me a mountain landscape at sunset"],
["Can you explain what's happening in this picture?"],
["Create an astronaut riding a horse"],
["Generate a futuristic cityscape with flying cars"],
],
inputs=message_input,
)
demo.launch(share=True)