|
import spaces |
|
import gradio as gr |
|
import torch |
|
from transformers import AutoConfig, AutoModelForCausalLM |
|
from janus.models import MultiModalityCausalLM, VLChatProcessor |
|
from janus.utils.io import load_pil_images |
|
from PIL import Image |
|
|
|
import numpy as np |
|
import os |
|
import time |
|
import re |
|
from Upsample import RealESRGAN |
|
import spaces |
|
|
|
|
|
|
|
model_path = "deepseek-ai/Janus-Pro-7B" |
|
config = AutoConfig.from_pretrained(model_path) |
|
language_config = config.language_config |
|
language_config._attn_implementation = 'eager' |
|
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, language_config=language_config, trust_remote_code=True) |
|
if torch.cuda.is_available(): |
|
vl_gpt = vl_gpt.to(torch.bfloat16).cuda() |
|
else: |
|
vl_gpt = vl_gpt.to(torch.float16) |
|
|
|
vl_chat_processor = VLChatProcessor.from_pretrained(model_path) |
|
tokenizer = vl_chat_processor.tokenizer |
|
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
|
|
sr_model = RealESRGAN(torch.device('cuda' if torch.cuda.is_available() else 'cpu'), scale=2) |
|
sr_model.load_weights(f'weights/RealESRGAN_x2.pth', download=False) |
|
|
|
|
|
GENERATION_PATTERNS = [ |
|
r"generate (.+)", |
|
r"create (.+)", |
|
r"draw (.+)", |
|
r"make (.+)", |
|
r"show (.+)", |
|
r"visualize (.+)", |
|
r"imagine (.+)", |
|
r"picture (.+)", |
|
] |
|
|
|
def is_generation_request(message): |
|
"""Determine if a message is requesting image generation""" |
|
message = message.lower().strip() |
|
|
|
|
|
for pattern in GENERATION_PATTERNS: |
|
match = re.match(pattern, message, re.IGNORECASE) |
|
if match: |
|
return True, match.group(1) |
|
|
|
|
|
image_keywords = ["image", "picture", "photo", "artwork", "illustration", "painting", "drawing"] |
|
generation_verbs = ["generate", "create", "make", "produce", "show me", "draw"] |
|
|
|
for verb in generation_verbs: |
|
for keyword in image_keywords: |
|
if f"{verb} {keyword}" in message or f"{verb} an {keyword}" in message or f"{verb} a {keyword}" in message: |
|
|
|
pattern = f"{verb}\\s+(?:an?\\s+)?{keyword}\\s+(?:of|showing|depicting|with)?\\s*(.*)" |
|
match = re.search(pattern, message, re.IGNORECASE) |
|
if match and match.group(1): |
|
return True, match.group(1) |
|
else: |
|
|
|
return True, message |
|
|
|
return False, None |
|
|
|
|
|
@torch.inference_mode() |
|
@spaces.GPU(duration=120) |
|
|
|
def unified_chat(image, message, chat_history, seed, top_p, temperature, cfg_weight, t2i_temperature, progress=gr.Progress(track_tqdm=True)): |
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
is_gen_request, extracted_prompt = is_generation_request(message) |
|
|
|
if is_gen_request: |
|
|
|
context_prompt = extracted_prompt |
|
|
|
|
|
generated_images = generate_image(prompt=context_prompt, conversation_history=chat_history, |
|
seed=seed, guidance=cfg_weight, t2i_temperature=t2i_temperature) |
|
|
|
|
|
response = f"I've generated the following images based on: '{extracted_prompt}'" |
|
|
|
|
|
chat_history.append((message, response)) |
|
|
|
|
|
return "", chat_history, image, generated_images |
|
|
|
|
|
|
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
|
|
|
|
conversation = [] |
|
|
|
|
|
if chat_history: |
|
|
|
for user_msg, assistant_msg in chat_history: |
|
conversation.append({ |
|
"role": "<|User|>", |
|
"content": user_msg, |
|
"images": [], |
|
}) |
|
conversation.append({ |
|
"role": "<|Assistant|>", |
|
"content": assistant_msg, |
|
}) |
|
|
|
|
|
user_content = message |
|
images_list = [] |
|
|
|
|
|
if image is not None: |
|
user_content = f"<image_placeholder>\n{message}" |
|
images_list = [image] |
|
|
|
conversation.append({ |
|
"role": "<|User|>", |
|
"content": user_content, |
|
"images": images_list, |
|
}) |
|
conversation.append({"role": "<|Assistant|>", "content": ""}) |
|
|
|
|
|
pil_images = [] |
|
if image is not None: |
|
pil_images = [Image.fromarray(image)] |
|
|
|
prepare_inputs = vl_chat_processor(conversations=conversation, images=pil_images, force_batchify=True |
|
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16) |
|
|
|
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) |
|
|
|
outputs = vl_gpt.language_model.generate(inputs_embeds=inputs_embeds, attention_mask=prepare_inputs.attention_mask, |
|
pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, max_new_tokens=512, temperature=temperature, top_p=top_p, |
|
do_sample=False if temperature == 0 else True, use_cache=True,) |
|
|
|
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True) |
|
|
|
|
|
chat_history.append((message, answer)) |
|
|
|
|
|
return "", chat_history, image, None |
|
|
|
|
|
def generate(input_ids, width, height, temperature: float = 1, parallel_size: int = 5, cfg_weight: float = 5, |
|
image_token_num_per_image: int = 576, patch_size: int = 16, progress=gr.Progress(track_tqdm=True)): |
|
|
|
torch.cuda.empty_cache() |
|
|
|
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device) |
|
for i in range(parallel_size * 2): |
|
tokens[i, :] = input_ids |
|
if i % 2 != 0: |
|
tokens[i, 1:-1] = vl_chat_processor.pad_id |
|
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens) |
|
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device) |
|
|
|
pkv = None |
|
for i in range(image_token_num_per_image): |
|
with torch.no_grad(): |
|
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv) |
|
pkv = outputs.past_key_values |
|
hidden_states = outputs.last_hidden_state |
|
logits = vl_gpt.gen_head(hidden_states[:, -1, :]) |
|
logit_cond = logits[0::2, :] |
|
logit_uncond = logits[1::2, :] |
|
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond) |
|
probs = torch.softmax(logits / temperature, dim=-1) |
|
next_token = torch.multinomial(probs, num_samples=1) |
|
generated_tokens[:, i] = next_token.squeeze(dim=-1) |
|
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) |
|
|
|
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token) |
|
inputs_embeds = img_embeds.unsqueeze(dim=1) |
|
|
|
patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), |
|
shape=[parallel_size, 8, width // patch_size, height // patch_size]) |
|
|
|
return generated_tokens.to(dtype=torch.int), patches |
|
|
|
def unpack(dec, width, height, parallel_size=5): |
|
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) |
|
dec = np.clip((dec + 1) / 2 * 255, 0, 255) |
|
|
|
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8) |
|
visual_img[:, :, :] = dec |
|
|
|
return visual_img |
|
|
|
|
|
|
|
@torch.inference_mode() |
|
@spaces.GPU(duration=120) |
|
def generate_image(prompt, conversation_history=None, |
|
seed=None, guidance=5, t2i_temperature=1.0, progress=gr.Progress(track_tqdm=True)): |
|
|
|
torch.cuda.empty_cache() |
|
|
|
if seed is not None: |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
np.random.seed(seed) |
|
width = 384 |
|
height = 384 |
|
parallel_size = 1 |
|
|
|
|
|
full_prompt = prompt |
|
|
|
|
|
if conversation_history and len(conversation_history) > 0: |
|
|
|
|
|
recent_turns = conversation_history[-5:] if len(conversation_history) > 5 else conversation_history |
|
|
|
context_parts = [] |
|
for user_msg, assistant_msg in recent_turns: |
|
if user_msg and user_msg.strip(): |
|
context_parts.append(f"User: {user_msg}") |
|
if assistant_msg and assistant_msg.strip(): |
|
context_parts.append(f"Assistant: {assistant_msg}") |
|
|
|
conversation_context = "\n".join(context_parts) |
|
|
|
|
|
full_prompt = f"Based on this conversation:\n{conversation_context}\n\nGenerate: {prompt}" |
|
|
|
with torch.no_grad(): |
|
messages = [{'role': '<|User|>', 'content': full_prompt}, |
|
{'role': '<|Assistant|>', 'content': ''}] |
|
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages, |
|
sft_format=vl_chat_processor.sft_format, system_prompt='') |
|
text = text + vl_chat_processor.image_start_tag |
|
|
|
input_ids = torch.LongTensor(tokenizer.encode(text)) |
|
output, patches = generate(input_ids, |
|
width // 16 * 16, |
|
height // 16 * 16, |
|
cfg_weight=guidance, |
|
parallel_size=parallel_size, |
|
temperature=t2i_temperature) |
|
images = unpack(patches, |
|
width // 16 * 16, |
|
height // 16 * 16, |
|
parallel_size=parallel_size) |
|
|
|
stime = time.time() |
|
ret_images = [image_upsample(Image.fromarray(images[i])) for i in range(parallel_size)] |
|
print(f'upsample time: {time.time() - stime}') |
|
return ret_images |
|
|
|
|
|
|
|
@spaces.GPU(duration=60) |
|
def image_upsample(img: Image.Image) -> Image.Image: |
|
if img is None: |
|
raise Exception("Image not uploaded") |
|
|
|
width, height = img.size |
|
|
|
if width >= 4096 or height >= 4096: |
|
raise Exception("The image is too large.") |
|
|
|
global sr_model |
|
result = sr_model.predict(img.convert('RGB')) |
|
return result |
|
|
|
|
|
|
|
def add_image_to_chat(image, chat_history): |
|
return image, chat_history |
|
|
|
|
|
|
|
def clear_chat(image): |
|
return [], image, None |
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Janus Pro 7B - Unified Chat Interface with Context Retention") |
|
gr.Markdown(""" |
|
## Description |
|
This space showcases Janus Pro 7B, a unified multimodal AI model capable of both image understanding and text-to-image generation within a seamless conversational experience. |
|
Unlike traditional models that treat these tasks separately, Janus Pro Chat maintains the same context across interactions, allowing for a more coherent and dynamic dialogue. |
|
You can chat with it about images, generate new ones from text prompts, and receive responses that are aware of the ongoing conversation—enhancing both usability and realism in multimodal AI. |
|
""") |
|
gr.Markdown(""" |
|
### Tips: |
|
1. Upload an image to discuss it |
|
2. Type commands like "generate [description]" to create images |
|
3. Continue chatting about uploaded or generated images |
|
4. Use natural language like "show me a sunset" or "create a portrait" |
|
""") |
|
|
|
|
|
chat_history = gr.State([]) |
|
current_image = gr.State(None) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image_input = gr.Image(label="Upload Image (optional)") |
|
upload_button = gr.Button("Add Image to Chat") |
|
|
|
with gr.Accordion("Chat Options", open=False): |
|
und_seed_input = gr.Number(label="Seed", precision=0, value=42) |
|
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p") |
|
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature") |
|
|
|
with gr.Accordion("Image Generation Options", open=False): |
|
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight") |
|
t2i_temperature_input = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="Temperature") |
|
|
|
clear_button = gr.Button("Clear Chat") |
|
|
|
|
|
with gr.Column(scale=2): |
|
chat_interface = gr.Chatbot(label="Chat History", height=500) |
|
message_input = gr.Textbox( |
|
label="Your message", |
|
placeholder="Ask about an image, continue chatting, or generate new images by typing 'generate [description]'", |
|
lines=2 |
|
) |
|
chat_button = gr.Button("Send") |
|
generated_images = gr.Gallery(label="Generated Images", visible=True, columns=2, rows=2) |
|
|
|
|
|
upload_button.click(add_image_to_chat, inputs=[image_input, chat_history], outputs=[current_image, chat_history]) |
|
|
|
chat_button.click( |
|
unified_chat, |
|
inputs=[current_image, message_input, chat_interface, und_seed_input, top_p, temperature, cfg_weight_input, t2i_temperature_input], |
|
outputs=[message_input, chat_interface, current_image, generated_images] |
|
) |
|
|
|
|
|
message_input.submit( |
|
unified_chat, |
|
inputs=[current_image, message_input, chat_interface, und_seed_input, top_p, temperature, cfg_weight_input, t2i_temperature_input], |
|
outputs=[message_input, chat_interface, current_image, generated_images] |
|
) |
|
|
|
clear_button.click( |
|
clear_chat, |
|
inputs=[current_image], |
|
outputs=[chat_interface, current_image, generated_images] |
|
) |
|
|
|
|
|
examples = gr.Examples( |
|
label="Example queries", |
|
examples=[ |
|
["What's in this image?"], |
|
["Generate a cute kitten with big eyes"], |
|
["Show me a mountain landscape at sunset"], |
|
["Can you explain what's happening in this picture?"], |
|
["Create an astronaut riding a horse"], |
|
["Generate a futuristic cityscape with flying cars"], |
|
], |
|
inputs=message_input, |
|
) |
|
|
|
demo.launch(share=True) |