RAG_llamaindex / app.py
Nikhil-Murade's picture
add import os in app.py
fadd722 verified
## Import necessary libraries
## Llamaindex library recently updated
import streamlit as st
import openai
import os
from llama_index.core import VectorStoreIndex, ServiceContext, Document
from llama_index.llms.openai import OpenAI
from llama_index.core import SimpleDirectoryReader
openai.api_key = os.getenv("OPENAI_API_KEY")
st.header("Chat with the Streamlit docsπŸ’¬ πŸ“š")
if "messages" not in st.session_state.keys(): # Initialize the chat message history
st.session_state.messages = [
{"role": "assistant", "content": "Ask me a question"}
]
@st.cache_resource(show_spinner=False)
def load_data():
with st.spinner(text="Loading and indexing the Streamlit docs – hang tight! This should take 1-2 minutes."):
reader = SimpleDirectoryReader(input_files=["Self-Management.pdf"], recursive=True)
docs = reader.load_data()
service_context = ServiceContext.from_defaults(llm=OpenAI(model="gpt-3.5-turbo", temperature=0.5, system_prompt="You are an expert on the Streamlit Python library and your job is to answer technical questions. Assume that all questions are related to the Streamlit Python library. Keep your answers technical and based on facts – do not hallucinate features."))
index = VectorStoreIndex.from_documents(docs, service_context=service_context)
return index
index = load_data()
chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True)
if prompt := st.chat_input("Your question"): # Prompt for user input and save to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
for message in st.session_state.messages: # Display the prior chat messages
with st.chat_message(message["role"]):
st.write(message["content"])
# If last message is not from assistant, generate a new response
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = chat_engine.chat(prompt)
st.write(response.response)
message = {"role": "assistant", "content": response.response}
st.session_state.messages.append(message) # Add response to message history