Update app.py
Browse files
app.py
CHANGED
|
@@ -7,15 +7,12 @@ import tempfile
|
|
| 7 |
import os
|
| 8 |
|
| 9 |
# --- MediaPipe Initialization ---
|
| 10 |
-
# Use try-except block for robustness if mediapipe is not installed correctly
|
| 11 |
try:
|
| 12 |
mp_face_mesh = mp.solutions.face_mesh
|
| 13 |
-
# NOTE: refine_landmarks=True gives 478 landmarks. False gives 468.
|
| 14 |
-
# We will control density by sub-sampling rather than this boolean for more control.
|
| 15 |
face_mesh = mp_face_mesh.FaceMesh(
|
| 16 |
static_image_mode=True,
|
| 17 |
max_num_faces=1,
|
| 18 |
-
refine_landmarks=True,
|
| 19 |
min_detection_confidence=0.5
|
| 20 |
)
|
| 21 |
print("MediaPipe Face Mesh initialized successfully.")
|
|
@@ -26,284 +23,145 @@ except (ImportError, AttributeError):
|
|
| 26 |
# --- Helper Functions ---
|
| 27 |
|
| 28 |
def get_landmarks(img, landmark_step=1):
|
| 29 |
-
"""
|
| 30 |
-
Detects face landmarks using MediaPipe Face Mesh.
|
| 31 |
-
Includes sub-sampling for performance.
|
| 32 |
-
- landmark_step: Step to sample landmarks. 1 = all, 2 = half, etc.
|
| 33 |
-
"""
|
| 34 |
if img is None:
|
| 35 |
-
print("Warning: Input image is None in get_landmarks.")
|
| 36 |
return None
|
| 37 |
if face_mesh is None:
|
| 38 |
-
print("Error: MediaPipe Face Mesh not available.")
|
| 39 |
return None
|
| 40 |
-
|
| 41 |
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 42 |
try:
|
| 43 |
results = face_mesh.process(img_rgb)
|
| 44 |
-
except Exception
|
| 45 |
-
print(f"Error processing image with MediaPipe: {e}")
|
| 46 |
return None
|
| 47 |
-
|
| 48 |
if not results.multi_face_landmarks:
|
| 49 |
-
print("Warning: No face detected.")
|
| 50 |
return None
|
| 51 |
-
|
| 52 |
landmarks_mp = results.multi_face_landmarks[0]
|
| 53 |
h, w, _ = img.shape
|
| 54 |
-
|
| 55 |
-
# Get all landmarks first
|
| 56 |
full_landmarks = np.array([(pt.x * w, pt.y * h) for pt in landmarks_mp.landmark], dtype=np.float32)
|
| 57 |
-
|
| 58 |
-
# --- NEW: Sub-sample landmarks for speed ---
|
| 59 |
-
if landmark_step > 1:
|
| 60 |
-
# Sample with a step, ensuring correspondence is maintained between faces
|
| 61 |
-
landmarks = full_landmarks[::landmark_step]
|
| 62 |
-
else:
|
| 63 |
-
landmarks = full_landmarks
|
| 64 |
-
|
| 65 |
if not np.all(np.isfinite(landmarks)):
|
| 66 |
-
print("Warning: Invalid landmark coordinates detected (NaN/inf).")
|
| 67 |
return None
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
corners = np.array([
|
| 70 |
-
[0, 0], [w - 1, 0], [0, h - 1], [w - 1, h - 1]
|
| 71 |
-
], dtype=np.float32)
|
| 72 |
-
|
| 73 |
-
# Always include corners for stable warping
|
| 74 |
-
landmarks = np.vstack((landmarks, corners))
|
| 75 |
-
|
| 76 |
-
return landmarks
|
| 77 |
|
| 78 |
def calculate_delaunay_triangles(rect, points):
|
| 79 |
-
"""Calculates Delaunay triangulation for a set of points. (No changes needed here)"""
|
| 80 |
if points is None or len(points) < 3:
|
| 81 |
return []
|
| 82 |
-
if not np.all(np.isfinite(points)):
|
| 83 |
-
points = points[np.all(np.isfinite(points), axis=1)]
|
| 84 |
-
if len(points) < 3: return []
|
| 85 |
-
|
| 86 |
points[:, 0] = np.clip(points[:, 0], rect[0], rect[0] + rect[2] - 1)
|
| 87 |
points[:, 1] = np.clip(points[:, 1], rect[1], rect[1] + rect[3] - 1)
|
| 88 |
-
|
| 89 |
subdiv = cv2.Subdiv2D(rect)
|
| 90 |
-
|
| 91 |
-
inserted_points_map = {}
|
| 92 |
-
|
| 93 |
for i, p in enumerate(points):
|
| 94 |
-
|
| 95 |
-
if
|
| 96 |
try:
|
| 97 |
-
subdiv.insert(
|
| 98 |
-
|
| 99 |
except cv2.error:
|
| 100 |
continue
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
return delaunay_triangles
|
| 111 |
|
| 112 |
|
| 113 |
def warp_triangle(img1, img2, t1, t2):
|
| 114 |
-
|
| 115 |
-
if len(t1) != 3 or len(t2) != 3 or not np.all(np.isfinite(t1)) or not np.all(np.isfinite(t2)):
|
| 116 |
return
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
img2_rect = cv2.warpAffine(img1_rect, warp_mat, size, None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
|
| 135 |
-
|
| 136 |
-
img2_rect *= mask
|
| 137 |
-
|
| 138 |
-
y_start, y_end = r2[1], r2[1] + r2[3]
|
| 139 |
-
x_start, x_end = r2[0], r2[0] + r2[2]
|
| 140 |
-
|
| 141 |
-
h_img2, w_img2, _ = img2.shape
|
| 142 |
-
if y_start >= h_img2 or x_start >= w_img2: return
|
| 143 |
|
| 144 |
-
img2[y_start:y_end, x_start:x_end] = img2[y_start:y_end, x_start:x_end] * (1.0 - mask) + img2_rect
|
| 145 |
-
except (cv2.error, IndexError):
|
| 146 |
-
pass # Ignore degenerate triangles or slicing errors
|
| 147 |
|
| 148 |
-
# --- Main Morphing Function (Modified) ---
|
| 149 |
def morph_faces(img1_orig, img2_orig, alpha, resize_dim, landmark_step):
|
| 150 |
-
"""
|
| 151 |
-
Morphs two faces with a seamless blending strategy to avoid artifacts.
|
| 152 |
-
"""
|
| 153 |
-
start_time = time.time()
|
| 154 |
if img1_orig is None or img2_orig is None:
|
| 155 |
return np.zeros((resize_dim, resize_dim, 3), dtype=np.uint8)
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
try:
|
| 159 |
-
img1 = cv2.resize(img1_orig, (resize_dim, resize_dim), interpolation=cv2.INTER_LINEAR)
|
| 160 |
-
img2 = cv2.resize(img2_orig, (resize_dim, resize_dim), interpolation=cv2.INTER_LINEAR)
|
| 161 |
-
except cv2.error:
|
| 162 |
-
return np.zeros((resize_dim, resize_dim, 3), dtype=np.uint8)
|
| 163 |
-
|
| 164 |
-
h, w, _ = img1.shape
|
| 165 |
-
rect = (0, 0, w, h)
|
| 166 |
-
|
| 167 |
-
# --- Landmark Detection with dynamic landmark_step ---
|
| 168 |
landmarks1 = get_landmarks(img1, landmark_step)
|
| 169 |
landmarks2 = get_landmarks(img2, landmark_step)
|
| 170 |
-
|
| 171 |
if landmarks1 is None or landmarks2 is None or landmarks1.shape != landmarks2.shape:
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
# --- SEAMLESS WARPING AND BLENDING ---
|
| 190 |
-
|
| 191 |
-
# 1. Create two empty canvases for the fully warped images
|
| 192 |
-
img1_float = img1.astype(np.float32) / 255.0
|
| 193 |
-
img2_float = img2.astype(np.float32) / 255.0
|
| 194 |
-
img1_warped = np.zeros_like(img1_float)
|
| 195 |
-
img2_warped = np.zeros_like(img2_float)
|
| 196 |
-
|
| 197 |
-
# 2. Warp triangles from each source to their morphed positions on the respective canvases
|
| 198 |
-
for indices in triangles_indices:
|
| 199 |
-
if any(idx >= len(landmarks1) for idx in indices): continue # Safety check
|
| 200 |
-
|
| 201 |
-
# Get triangle vertices for source 1, source 2, and the morphed shape
|
| 202 |
-
t1 = landmarks1[indices]
|
| 203 |
-
t2 = landmarks2[indices]
|
| 204 |
-
t_morphed = landmarks_morphed[indices]
|
| 205 |
-
|
| 206 |
-
# Warp the triangle from img1 to the morphed position on the img1_warped canvas
|
| 207 |
-
warp_triangle(img1_float, img1_warped, t1, t_morphed)
|
| 208 |
-
|
| 209 |
-
# Warp the triangle from img2 to the morphed position on the img2_warped canvas
|
| 210 |
-
warp_triangle(img2_float, img2_warped, t2, t_morphed)
|
| 211 |
|
| 212 |
-
# 3. Perform a single, final alpha blend of the two completed warped images
|
| 213 |
-
morphed_img_float = (1.0 - alpha) * img1_warped + alpha * img2_warped
|
| 214 |
-
|
| 215 |
-
# --- Final Conversion ---
|
| 216 |
-
morphed_img = (morphed_img_float * 255.0).clip(0, 255).astype(np.uint8)
|
| 217 |
-
end_time = time.time()
|
| 218 |
-
print(f"Frame morph ({w}x{h}, {len(landmarks1)} landmarks) took: {end_time - start_time:.4f}s")
|
| 219 |
-
return morphed_img
|
| 220 |
|
| 221 |
-
# --- Video Processing Function (Modified) ---
|
| 222 |
def process_video(video_path, target_img, transition_level, resolution, landmark_sampling):
|
| 223 |
-
"""
|
| 224 |
-
Callback function that now receives resolution and landmark settings from the UI.
|
| 225 |
-
"""
|
| 226 |
-
|
| 227 |
-
target_img = cv2.cvtColor(target_img, cv2.COLOR_RGB2BGR)
|
| 228 |
-
|
| 229 |
if video_path is None or target_img is None:
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 233 |
-
out = cv2.VideoWriter(dummy_path, fourcc, 24, (resolution, resolution))
|
| 234 |
out.release()
|
| 235 |
-
return
|
| 236 |
-
|
| 237 |
-
alpha = (transition_level
|
| 238 |
-
alpha = float(np.clip(alpha, 0.0, 1.0))
|
| 239 |
-
|
| 240 |
cap = cv2.VideoCapture(video_path)
|
| 241 |
-
if not cap.isOpened():
|
| 242 |
-
raise IOError(f"Cannot open video file: {video_path}")
|
| 243 |
-
|
| 244 |
fps = cap.get(cv2.CAP_PROP_FPS) or 24
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
# --- Use dynamic resolution for the output video ---
|
| 249 |
-
out = cv2.VideoWriter(tmp_out.name, fourcc, fps, (resolution, resolution))
|
| 250 |
-
|
| 251 |
-
frame_count = 0
|
| 252 |
while True:
|
| 253 |
ret, frame = cap.read()
|
| 254 |
-
if not ret:
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
out.write(morphed)
|
| 260 |
-
frame_count += 1
|
| 261 |
-
|
| 262 |
-
print(f"Processed {frame_count} frames.")
|
| 263 |
-
cap.release()
|
| 264 |
-
out.release()
|
| 265 |
-
return tmp_out.name
|
| 266 |
|
| 267 |
-
# --- Gradio App
|
| 268 |
css = """video, img { object-fit: contain !important; }"""
|
| 269 |
with gr.Blocks(css=css) as iface:
|
| 270 |
gr.Markdown("# Real-Time Video Face Morph 🚀")
|
| 271 |
-
gr.Markdown("
|
| 272 |
with gr.Row():
|
| 273 |
video_input = gr.Video(label="Input Video")
|
| 274 |
img_input = gr.Image(type="numpy", label="Target Face Image")
|
| 275 |
-
|
| 276 |
with gr.Row():
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
info="Lower resolution means much faster processing."
|
| 283 |
-
)
|
| 284 |
-
landmark_slider = gr.Slider(
|
| 285 |
-
1, 4,
|
| 286 |
-
value=1,
|
| 287 |
-
step=1,
|
| 288 |
-
label="Landmark Sub-sampling",
|
| 289 |
-
info="1=Max Quality (~478 landmarks), 4=Max Speed (~120 landmarks)"
|
| 290 |
-
)
|
| 291 |
-
|
| 292 |
-
slider = gr.Slider(-1.0, 1.0, value=0.0, step=0.05, label="Transition Level (-1 = Video, 1 = Image)")
|
| 293 |
video_output = gr.Video(label="Morphed Video")
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
inputs=inputs,
|
| 303 |
-
outputs=video_output,
|
| 304 |
-
show_progress="full"
|
| 305 |
-
)
|
| 306 |
gr.Markdown("---\n*Built with Gradio, OpenCV & MediaPipe.*")
|
| 307 |
|
| 308 |
if __name__ == "__main__":
|
| 309 |
-
iface.launch(debug=True)
|
|
|
|
| 7 |
import os
|
| 8 |
|
| 9 |
# --- MediaPipe Initialization ---
|
|
|
|
| 10 |
try:
|
| 11 |
mp_face_mesh = mp.solutions.face_mesh
|
|
|
|
|
|
|
| 12 |
face_mesh = mp_face_mesh.FaceMesh(
|
| 13 |
static_image_mode=True,
|
| 14 |
max_num_faces=1,
|
| 15 |
+
refine_landmarks=True,
|
| 16 |
min_detection_confidence=0.5
|
| 17 |
)
|
| 18 |
print("MediaPipe Face Mesh initialized successfully.")
|
|
|
|
| 23 |
# --- Helper Functions ---
|
| 24 |
|
| 25 |
def get_landmarks(img, landmark_step=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
if img is None:
|
|
|
|
| 27 |
return None
|
| 28 |
if face_mesh is None:
|
|
|
|
| 29 |
return None
|
|
|
|
| 30 |
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 31 |
try:
|
| 32 |
results = face_mesh.process(img_rgb)
|
| 33 |
+
except Exception:
|
|
|
|
| 34 |
return None
|
|
|
|
| 35 |
if not results.multi_face_landmarks:
|
|
|
|
| 36 |
return None
|
|
|
|
| 37 |
landmarks_mp = results.multi_face_landmarks[0]
|
| 38 |
h, w, _ = img.shape
|
|
|
|
|
|
|
| 39 |
full_landmarks = np.array([(pt.x * w, pt.y * h) for pt in landmarks_mp.landmark], dtype=np.float32)
|
| 40 |
+
landmarks = full_landmarks[::landmark_step] if landmark_step > 1 else full_landmarks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
if not np.all(np.isfinite(landmarks)):
|
|
|
|
| 42 |
return None
|
| 43 |
+
corners = np.array([[0, 0], [w - 1, 0], [0, h - 1], [w - 1, h - 1]], dtype=np.float32)
|
| 44 |
+
return np.vstack((landmarks, corners))
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
def calculate_delaunay_triangles(rect, points):
|
|
|
|
| 48 |
if points is None or len(points) < 3:
|
| 49 |
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
points[:, 0] = np.clip(points[:, 0], rect[0], rect[0] + rect[2] - 1)
|
| 51 |
points[:, 1] = np.clip(points[:, 1], rect[1], rect[1] + rect[3] - 1)
|
|
|
|
| 52 |
subdiv = cv2.Subdiv2D(rect)
|
| 53 |
+
inserted = {}
|
|
|
|
|
|
|
| 54 |
for i, p in enumerate(points):
|
| 55 |
+
tup = (int(p[0]), int(p[1]))
|
| 56 |
+
if tup not in inserted:
|
| 57 |
try:
|
| 58 |
+
subdiv.insert(tup)
|
| 59 |
+
inserted[tup] = i
|
| 60 |
except cv2.error:
|
| 61 |
continue
|
| 62 |
+
triangles = subdiv.getTriangleList()
|
| 63 |
+
delaunay = []
|
| 64 |
+
for t in triangles:
|
| 65 |
+
coords = [(int(t[0]), int(t[1])), (int(t[2]), int(t[3])), (int(t[4]), int(t[5]))]
|
| 66 |
+
if all(rect[0] <= x < rect[0] + rect[2] and rect[1] <= y < rect[1] + rect[3] for x, y in coords):
|
| 67 |
+
idxs = [inserted.get(c) for c in coords]
|
| 68 |
+
if all(i is not None for i in idxs) and len(set(idxs)) == 3:
|
| 69 |
+
delaunay.append(idxs)
|
| 70 |
+
return delaunay
|
|
|
|
| 71 |
|
| 72 |
|
| 73 |
def warp_triangle(img1, img2, t1, t2):
|
| 74 |
+
if len(t1) != 3 or len(t2) != 3:
|
|
|
|
| 75 |
return
|
| 76 |
+
r1 = cv2.boundingRect(np.float32([t1]))
|
| 77 |
+
r2 = cv2.boundingRect(np.float32([t2]))
|
| 78 |
+
if r1[2] == 0 or r1[3] == 0 or r2[2] == 0 or r2[3] == 0:
|
| 79 |
+
return
|
| 80 |
+
t1_rect = [(t1[i][0] - r1[0], t1[i][1] - r1[1]) for i in range(3)]
|
| 81 |
+
t2_rect = [(t2[i][0] - r2[0], t2[i][1] - r2[1]) for i in range(3)]
|
| 82 |
+
mask = np.zeros((r2[3], r2[2], 3), dtype=np.float32)
|
| 83 |
+
cv2.fillConvexPoly(mask, np.int32(t2_rect), (1.0, 1.0, 1.0), 16, 0)
|
| 84 |
+
img1_rect = img1[r1[1]:r1[1]+r1[3], r1[0]:r1[0]+r1[2]]
|
| 85 |
+
if img1_rect.size == 0:
|
| 86 |
+
return
|
| 87 |
+
warp_mat = cv2.getAffineTransform(np.float32(t1_rect), np.float32(t2_rect))
|
| 88 |
+
img2_rect = cv2.warpAffine(img1_rect, warp_mat, (r2[2], r2[3]), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
|
| 89 |
+
img2_rect *= mask
|
| 90 |
+
y1, y2 = r2[1], r2[1] + r2[3]
|
| 91 |
+
x1, x2 = r2[0], r2[0] + r2[2]
|
| 92 |
+
img2[y1:y2, x1:x2] = img2[y1:y2, x1:x2] * (1 - mask) + img2_rect
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
|
|
|
|
|
|
|
|
|
| 94 |
|
|
|
|
| 95 |
def morph_faces(img1_orig, img2_orig, alpha, resize_dim, landmark_step):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
if img1_orig is None or img2_orig is None:
|
| 97 |
return np.zeros((resize_dim, resize_dim, 3), dtype=np.uint8)
|
| 98 |
+
img1 = cv2.resize(img1_orig, (resize_dim, resize_dim))
|
| 99 |
+
img2 = cv2.resize(img2_orig, (resize_dim, resize_dim))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
landmarks1 = get_landmarks(img1, landmark_step)
|
| 101 |
landmarks2 = get_landmarks(img2, landmark_step)
|
|
|
|
| 102 |
if landmarks1 is None or landmarks2 is None or landmarks1.shape != landmarks2.shape:
|
| 103 |
+
return cv2.addWeighted(img1, 1-alpha, img2, alpha, 0)
|
| 104 |
+
morphed_pts = (1-alpha)*landmarks1 + alpha*landmarks2
|
| 105 |
+
rect = (0, 0, resize_dim, resize_dim)
|
| 106 |
+
tris = calculate_delaunay_triangles(rect, morphed_pts)
|
| 107 |
+
if not tris:
|
| 108 |
+
return cv2.addWeighted(img1, 1-alpha, img2, alpha, 0)
|
| 109 |
+
img1_f = img1.astype(np.float32)/255.0
|
| 110 |
+
img2_f = img2.astype(np.float32)/255.0
|
| 111 |
+
w1 = np.zeros_like(img1_f)
|
| 112 |
+
w2 = np.zeros_like(img2_f)
|
| 113 |
+
for ids in tris:
|
| 114 |
+
t1 = landmarks1[ids]; t2 = landmarks2[ids]; tm = morphed_pts[ids]
|
| 115 |
+
warp_triangle(img1_f, w1, t1, tm)
|
| 116 |
+
warp_triangle(img2_f, w2, t2, tm)
|
| 117 |
+
morph = (1-alpha)*w1 + alpha*w2
|
| 118 |
+
return (morph*255).astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
|
|
|
| 121 |
def process_video(video_path, target_img, transition_level, resolution, landmark_sampling):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
if video_path is None or target_img is None:
|
| 123 |
+
dummy = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
|
| 124 |
+
out = cv2.VideoWriter(dummy, cv2.VideoWriter_fourcc(*'mp4v'), 24, (resolution, resolution))
|
|
|
|
|
|
|
| 125 |
out.release()
|
| 126 |
+
return dummy
|
| 127 |
+
target_bgr = cv2.cvtColor(target_img, cv2.COLOR_RGB2BGR)
|
| 128 |
+
alpha = float(np.clip((transition_level+1)/2,0,1))
|
|
|
|
|
|
|
| 129 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
|
|
|
|
|
| 130 |
fps = cap.get(cv2.CAP_PROP_FPS) or 24
|
| 131 |
+
out_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
|
| 132 |
+
out = cv2.VideoWriter(out_file, cv2.VideoWriter_fourcc(*'mp4v'), fps, (resolution, resolution))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
while True:
|
| 134 |
ret, frame = cap.read()
|
| 135 |
+
if not ret: break
|
| 136 |
+
mor = morph_faces(frame, target_bgr, alpha, resolution, landmark_sampling)
|
| 137 |
+
out.write(mor)
|
| 138 |
+
cap.release(); out.release()
|
| 139 |
+
return out_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
+
# --- Gradio App ---
|
| 142 |
css = """video, img { object-fit: contain !important; }"""
|
| 143 |
with gr.Blocks(css=css) as iface:
|
| 144 |
gr.Markdown("# Real-Time Video Face Morph 🚀")
|
| 145 |
+
gr.Markdown("Use the button below to generate and show a progress bar during processing.")
|
| 146 |
with gr.Row():
|
| 147 |
video_input = gr.Video(label="Input Video")
|
| 148 |
img_input = gr.Image(type="numpy", label="Target Face Image")
|
|
|
|
| 149 |
with gr.Row():
|
| 150 |
+
resolution_slider = gr.Dropdown([256,384,512,768], value=512, label="Resolution")
|
| 151 |
+
landmark_slider = gr.Slider(1,4,value=1,step=1, label="Landmark Sub-sampling")
|
| 152 |
+
transition_slider = gr.Slider(-1.0,1.0,value=0.0,step=0.05, label="Transition Level")
|
| 153 |
+
generate_btn = gr.Button("Generate Morph 🚀", variant="primary")
|
| 154 |
+
progress_bar = gr.Progress()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
video_output = gr.Video(label="Morphed Video")
|
| 156 |
+
|
| 157 |
+
generate_btn.click(
|
| 158 |
+
fn=process_video,
|
| 159 |
+
inputs=[video_input, img_input, transition_slider, resolution_slider, landmark_slider],
|
| 160 |
+
outputs=video_output,
|
| 161 |
+
show_progress=True
|
| 162 |
+
)
|
| 163 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
gr.Markdown("---\n*Built with Gradio, OpenCV & MediaPipe.*")
|
| 165 |
|
| 166 |
if __name__ == "__main__":
|
| 167 |
+
iface.launch(debug=True)
|