File size: 12,445 Bytes
948c356 2b3a3cf 948c356 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
# Models: https://github.com/abacusai/api-python/blob/main/abacusai/api_class/enums.py
model_mapping = {
"sonnet": "CLAUDE_V3_5_SONNET",
"4o": "OPENAI_GPT4O",
"32": "OPENAI_GPT4_32K",
"turbo": "OPENAI_GPT4_128K_LATEST",
"vision": "OPENAI_GPT4_VISION",
"3.5": "OPENAI_GPT3_5",
"opus": "CLAUDE_V3_OPUS",
"haiku": "CLAUDE_V3_HAIKU",
"claude-2": "CLAUDE_V2_1",
"pro": "GEMINI_1_5_PRO",
"palm": "PALM",
"llama": "LLAMA3_LARGE_CHAT",
"_legacy_sonnet": "CLAUDE_V3_SONNET",
"_legacy_gemini": "GEMINI_PRO",
"_legacy_palm": "PALM_TEXT",
"gpt-4o": "OPENAI_GPT4O",
"gpt-4-turbo": "OPENAI_GPT4_128K_LATEST",
"claude-3-opus": "CLAUDE_V3_OPUS"
}
# requirements: fastapi, curl_cffi, cachetools, websockets, orjson, uvicorn, uvloop, slowapi
import os
set_env = lambda var_name, default=None: environment_variables.update({var_name: os.getenv(var_name, default)}) or os.getenv(var_name, default)
environment_variables = {}
# Define your environment variables using the set_env function
FALLBACK_MODEL = set_env("FALLBACK_LLM", "CLAUDE_V3_5_SONNET")
RATE_LIMIT = set_env("RATE_LIMIT", "1/4 second")
LOG_LEVEL = set_env("LOG_LEVEL", "INFO")
PORT = int(set_env("PORT", "8000"))
BASE_HOST = set_env("BASE_HOST", "apps.abacus.ai")
DEPLOYMENT_CACHE_TTL = 3600 * 24 # 24 hours
IMPERSONATE_BASE = "chrome"
CURL_MAX_CLIENTS = 300
import asyncio
import json
import uuid
import random
import logging
from typing import Dict, Any
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import StreamingResponse
from curl_cffi import requests, CurlOpt, CurlHttpVersion
from cachetools import TTLCache
deployment_cache = TTLCache(maxsize=300, ttl=DEPLOYMENT_CACHE_TTL)
cache_lock = asyncio.Lock()
import websockets
try:
import orjson as json
jsonDumps = lambda text: json.dumps(text).decode('utf-8')
except ImportError:
import json
jsonDumps = json.dumps
from slowapi import Limiter, _rate_limit_exceeded_handler
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
CURL_OPTS = {
CurlOpt.TCP_NODELAY: 1, CurlOpt.FORBID_REUSE: 0, CurlOpt.FRESH_CONNECT: 0, CurlOpt.TCP_KEEPALIVE: 1, CurlOpt.MAXAGE_CONN: 30
}
client = requests.AsyncSession(
impersonate=IMPERSONATE_BASE, default_headers=True, max_clients=CURL_MAX_CLIENTS, curl_options=CURL_OPTS, http_version=CurlHttpVersion.V2_PRIOR_KNOWLEDGE
)
from rich.logging import RichHandler
from rich.console import Console
from rich.table import Table
# Setup logger with RichHandler for better logging output
logging.basicConfig(
level=getattr(logging, LOG_LEVEL),
format="%(message)s",
datefmt="[%X]",
handlers=[RichHandler()]
)
logger = logging.getLogger(__name__)
app = FastAPI()
limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter
app.add_exception_handler(RateLimitExceeded, _rate_limit_exceeded_handler)
def convert_unicode_escape(s):
return s.encode('utf-8').decode('unicode-escape')
async def make_request(method: str, url: str, headers: dict, data: dict):
try:
response = await client.request(method=method, url=url, headers=headers, json=data)
status = response.status_code
if status == 200:
return response
elif status in (401, 403):
raise HTTPException(status_code=401, detail="Invalid authorization info")
else:
raise HTTPException(status_code=status, detail=f"Network issue: {response.text}")
except Exception as e:
logger.error(f"Request error: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Request error: {str(e)}")
def map_model(requestModel):
model = requestModel.lower()
if model.startswith('adv/'):
model = model[4:]
return model if model else FALLBACK_MODEL
return next((value for key, value in model_mapping.items() if key in model), FALLBACK_MODEL)
async def get_deployment_details(apikey: str) -> str:
if apikey in deployment_cache:
return deployment_cache[apikey]
async with cache_lock:
if apikey in deployment_cache:
return deployment_cache[apikey]
headers = {
'apiKey': apikey,
'accept': '*/*',
}
response = await make_request(
method="GET",
url=f"https://{BASE_HOST}/api/listExternalApplications",
headers=headers,
data={}
)
result = response.json()
logger.debug(f"List external applications result: {result}")
if result.get("success") and result.get("result"):
deployment_details = result["result"][0]
deployment_cache[apikey] = deployment_details
logger.info(f"#{deployment_details['deploymentId']} - Access granted successfully")
return deployment_details
else:
raise HTTPException(status_code=500, detail="Failed to retrieve deployment info")
async def create_conversation(apikey: str) -> str:
deployment_details = await get_deployment_details(apikey)
payload = {
"deploymentId": deployment_details["deploymentId"],
"name": "New Chat",
"externalApplicationId": deployment_details["externalApplicationId"]
}
try:
headers = {
'Content-Type': 'application/json',
'apiKey': apikey,
'REAI-UI': '1',
'X-Abacus-Org-Host': 'apps'
}
response = await make_request(
method="POST",
url=f"https://{BASE_HOST}/api/createDeploymentConversation",
headers=headers,
data=payload
)
result = response.json()
logger.debug(f"Create conversation result: {result}")
if 'result' not in result or 'deploymentConversationId' not in result['result']:
l#ogger.error(f"Unexpected response structure: {result}")
raise HTTPException(status_code=401, detail="Invalid Abacus apikey")
return result["result"]["deploymentConversationId"], deployment_details["deploymentId"]
except Exception as e:
logger.error(f"Error creating conversation: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Error creating conversation: {str(e)}")
def serialize_openai_messages(messages):
def get_content(message):
try:
# Check if the 'content' key exists in message
if 'content' not in message:
return ''
if not isinstance(message['content'], list):
return message['content']
return message['content'][0]['text']
except KeyError as e:
raise HTTPException(status_code=400, detail="Invalid request body")
serialized_messages = [
f"{msg['role'].capitalize()}: {get_content(msg)}"
for msg in messages
]
result = "\n\n".join(serialized_messages)
result += "Assistant: {...}\n\n"
return result.strip()
CHAT_OUTPUT_PREFIX = 'data: {"id":"0","object":"0","created":0,"model":"0","choices":[{"index":0,"delta":{"content":'
CHAT_OUTPUT_SUFFIX = '}}]}\n\n'
ENDING_CHUNK = 'data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-4","choices":[{"index":0,"delta":{},"finish_reason":"stop"}]}\n\ndata: [DONE]\n\n'
NS_PREFIX = '{"id":"chatcmpl-123","object":"chat.completion","created":1694268190,"model":"gpt-4","choices":[{"index":0,"message":{"role":"assistant","content":"'
NS_SUFFIX = '"},"logprobs":null,"finish_reason":"stop"}],"usage":{"prompt_tokens":0,"completion_tokens":0,"total_tokens":0},"system_fingerprint":"0"}\n\n'
async def stream_chat(apikey: str, conversation_id: str, body: Any, sse_flag=True):
model = body["model"]
messages = body["messages"]
request_id = str(uuid.uuid4())
ws_url = f"wss://{BASE_HOST}/api/ws/chatLLMSendMessage?requestId={request_id}&docInfos=%5B%5D&deploymentConversationId={conversation_id}&llmName={model}&orgHost=apps"
headers = {
"apiKey": apikey,
"Origin": f"https://{BASE_HOST}",
}
if sse_flag:
data_prefix, data_suffix = CHAT_OUTPUT_PREFIX, CHAT_OUTPUT_SUFFIX
_Jd = jsonDumps
else:
data_prefix, data_suffix = "", ""
_Jd = lambda x: jsonDumps(x)[1:-1]
yield NS_PREFIX
try:
async with websockets.connect(ws_url, extra_headers=headers) as websocket:
serialized_msgs = serialize_openai_messages(messages)
await websocket.send(jsonDumps({"message": serialized_msgs}))
logger.debug(f"Sent message to WebSocket: {serialized_msgs}")
async for response in websocket:
logger.debug(f"Received WebSocket response: {response}")
data = json.loads(response)
if "segment" in data:
segment = data['segment']
if data['type'] == "image_url":
segment = f"\n"
yield data_prefix
yield _Jd(segment)
yield data_suffix
elif data.get("end", False):
break
yield (ENDING_CHUNK if sse_flag else NS_SUFFIX)
except Exception as e:
logger.error(f"Error in WebSocket communication: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"WebSocket error: {str(e)}")
async def handle_chat_completion(request: Request):
try:
body = await request.json()
logger.debug(f"Received request body: {body}")
auth_header = request.headers.get("Authorization")
if not auth_header or not auth_header.startswith("Bearer "):
raise HTTPException(status_code=401, detail="Invalid Authorization header")
abacus_token = auth_header[7:] # Remove "Bearer " prefix
if not abacus_token:
raise HTTPException(status_code=401, detail="Empty Authorization token")
apikey = random.choice(abacus_token.split("|") or [abacus_token]) \
if ("|" in abacus_token) \
else abacus_token
apikey = convert_unicode_escape(apikey.strip())
logger.debug(f"Parsed apikey: {apikey}")
conversation_id, deployment_id = await create_conversation(apikey)
logger.debug(f"Created conversation with ID: {conversation_id}")
sse_flag = body.get("stream", (True if not "3.5" in body["model"] else False))
llm_name = map_model(body.get("model", ""))
body["model"] = llm_name
logger.info(f'#{deployment_id} - Querying {llm_name} in {("stream" if sse_flag else "non-stream")} mode')
return StreamingResponse(stream_chat(apikey, conversation_id, body, sse_flag),
media_type=("text/event-stream" if sse_flag else "application/json") + \
";charset=UTF-8")
except Exception as e:
logger.error(f"Error in chat_completions: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.post("/hf/v1/chat/completions")
@limiter.limit(RATE_LIMIT)
async def chat_completions(request: Request) -> StreamingResponse:
return await handle_chat_completion(request)
def print_startup_info():
console = Console()
table = Table(title="Environment Variables & Available Models")
# Set up columns
table.add_column("Category", style="green")
table.add_column("Key", style="cyan")
table.add_column("Value", style="magenta")
# Add environment variables to the table
table.add_row("[bold]Environment Variables[/bold]", "", "")
for key, value in environment_variables.items():
table.add_row("", key, str(value))
# Add a separator row between the sections
table.add_row("", "", "")
# Add model mapping to the table
table.add_row("[bold]Available Models[/bold]", "", "")
for short_name, full_name in model_mapping.items():
table.add_row("", short_name, full_name)
# Print the table to the console
console.print(table)
if __name__ == "__main__":
try:
import uvloop
except ImportError:
uvloop = None
if uvloop:
uvloop.install()
print_startup_info()
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=PORT, access_log=False) |