Spaces:
Paused
Paused
| import argparse | |
| import markdown2 | |
| import os | |
| import sys | |
| import uvicorn | |
| from pathlib import Path | |
| from typing import Union | |
| from fastapi import FastAPI, Depends | |
| from fastapi.responses import HTMLResponse | |
| from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials | |
| from pydantic import BaseModel, Field | |
| from sse_starlette.sse import EventSourceResponse, ServerSentEvent | |
| from tclogger import logger | |
| from constants.models import AVAILABLE_MODELS_DICTS | |
| from constants.envs import CONFIG | |
| from messagers.message_composer import MessageComposer | |
| from mocks.stream_chat_mocker import stream_chat_mock | |
| from networks.huggingface_streamer import HuggingfaceStreamer | |
| from networks.openai_streamer import OpenaiStreamer | |
| class ChatAPIApp: | |
| def __init__(self): | |
| self.app = FastAPI( | |
| docs_url="/", | |
| title=CONFIG["app_name"], | |
| swagger_ui_parameters={"defaultModelsExpandDepth": -1}, | |
| version=CONFIG["version"], | |
| ) | |
| self.setup_routes() | |
| def get_available_models(self): | |
| return {"object": "list", "data": AVAILABLE_MODELS_DICTS} | |
| def extract_api_key( | |
| credentials: HTTPAuthorizationCredentials = Depends( | |
| HTTPBearer(auto_error=False) | |
| ), | |
| ): | |
| api_key = None | |
| if credentials: | |
| api_key = credentials.credentials | |
| else: | |
| api_key = os.getenv("HF_TOKEN") | |
| if api_key: | |
| if api_key.startswith("hf_"): | |
| return api_key | |
| else: | |
| logger.warn(f"Invalid HF Token!") | |
| else: | |
| logger.warn("Not provide HF Token!") | |
| return None | |
| class ChatCompletionsPostItem(BaseModel): | |
| model: str = Field( | |
| default="mixtral-8x7b", | |
| description="(str) `mixtral-8x7b`", | |
| ) | |
| messages: list = Field( | |
| default=[{"role": "user", "content": "Hello, who are you?"}], | |
| description="(list) Messages", | |
| ) | |
| temperature: Union[float, None] = Field( | |
| default=0.5, | |
| description="(float) Temperature", | |
| ) | |
| top_p: Union[float, None] = Field( | |
| default=0.95, | |
| description="(float) top p", | |
| ) | |
| max_tokens: Union[int, None] = Field( | |
| default=-1, | |
| description="(int) Max tokens", | |
| ) | |
| use_cache: bool = Field( | |
| default=False, | |
| description="(bool) Use cache", | |
| ) | |
| stream: bool = Field( | |
| default=True, | |
| description="(bool) Stream", | |
| ) | |
| def chat_completions( | |
| self, item: ChatCompletionsPostItem, api_key: str = Depends(extract_api_key) | |
| ): | |
| if item.model == "gpt-3.5-turbo": | |
| streamer = OpenaiStreamer() | |
| stream_response = streamer.chat_response(messages=item.messages) | |
| else: | |
| streamer = HuggingfaceStreamer(model=item.model) | |
| composer = MessageComposer(model=item.model) | |
| composer.merge(messages=item.messages) | |
| stream_response = streamer.chat_response( | |
| prompt=composer.merged_str, | |
| temperature=item.temperature, | |
| top_p=item.top_p, | |
| max_new_tokens=item.max_tokens, | |
| api_key=api_key, | |
| use_cache=item.use_cache, | |
| ) | |
| if item.stream: | |
| event_source_response = EventSourceResponse( | |
| streamer.chat_return_generator(stream_response), | |
| media_type="text/event-stream", | |
| ping=2000, | |
| ping_message_factory=lambda: ServerSentEvent(**{"comment": ""}), | |
| ) | |
| return event_source_response | |
| else: | |
| data_response = streamer.chat_return_dict(stream_response) | |
| return data_response | |
| def get_readme(self): | |
| readme_path = Path(__file__).parents[1] / "README.md" | |
| with open(readme_path, "r", encoding="utf-8") as rf: | |
| readme_str = rf.read() | |
| readme_html = markdown2.markdown( | |
| readme_str, extras=["table", "fenced-code-blocks", "highlightjs-lang"] | |
| ) | |
| return readme_html | |
| def setup_routes(self): | |
| for prefix in ["", "/v1", "/api", "/api/v1"]: | |
| if prefix in ["/api/v1"]: | |
| include_in_schema = True | |
| else: | |
| include_in_schema = False | |
| self.app.get( | |
| prefix + "/models", | |
| summary="Get available models", | |
| include_in_schema=include_in_schema, | |
| )(self.get_available_models) | |
| self.app.post( | |
| prefix + "/chat/completions", | |
| summary="Chat completions in conversation session", | |
| include_in_schema=include_in_schema, | |
| )(self.chat_completions) | |
| self.app.get( | |
| "/readme", | |
| summary="README of HF LLM API", | |
| response_class=HTMLResponse, | |
| include_in_schema=False, | |
| )(self.get_readme) | |
| class ArgParser(argparse.ArgumentParser): | |
| def __init__(self, *args, **kwargs): | |
| super(ArgParser, self).__init__(*args, **kwargs) | |
| self.add_argument( | |
| "-s", | |
| "--host", | |
| type=str, | |
| default=CONFIG["host"], | |
| help=f"Host for {CONFIG['app_name']}", | |
| ) | |
| self.add_argument( | |
| "-p", | |
| "--port", | |
| type=int, | |
| default=CONFIG["port"], | |
| help=f"Port for {CONFIG['app_name']}", | |
| ) | |
| self.add_argument( | |
| "-d", | |
| "--dev", | |
| default=False, | |
| action="store_true", | |
| help="Run in dev mode", | |
| ) | |
| self.args = self.parse_args(sys.argv[1:]) | |
| app = ChatAPIApp().app | |
| if __name__ == "__main__": | |
| args = ArgParser().args | |
| if args.dev: | |
| uvicorn.run("__main__:app", host=args.host, port=args.port, reload=True) | |
| else: | |
| uvicorn.run("__main__:app", host=args.host, port=args.port, reload=False) | |
| # python -m apis.chat_api # [Docker] on product mode | |
| # python -m apis.chat_api -d # [Dev] on develop mode | |