Spaces:
Sleeping
Sleeping
Resolve merge conflicts and add multi-format image support
Browse files- Fixed merge conflict in utils/advanced_extraction.py
- Added support for PNG, JPG, JPEG, BMP, GIF formats
- Updated app.py to handle both GeoTIFF and regular image formats
- GeoTIFF files use NDVI analysis, other formats use contour detection
- Updated UI labels and instructions for broader format support
- Maintained HF Spaces compatibility with lightweight dependencies
- .gitattributes +9 -0
- README.md +40 -0
- app.py +407 -141
- example.tif +3 -0
- packages.txt +7 -0
- requirements.txt +12 -0
- utils/__pycache__/__init__.cpython-310.pyc +0 -0
- utils/__pycache__/advanced_extraction.cpython-310.pyc +0 -0
- utils/__pycache__/geospatial.cpython-310.pyc +0 -0
- utils/__pycache__/image_processing.cpython-310.pyc +0 -0
- utils/__pycache__/segmentation.cpython-310.pyc +0 -0
- utils/advanced_extraction.py +79 -223
.gitattributes
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.tif filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.bmp filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ico filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.tiff filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: ForestAI Tree Detection
|
3 |
+
emoji: 🌲
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.34.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
# ForestAI - Tree Detection from Satellite Imagery
|
14 |
+
|
15 |
+
Upload a GeoTIFF file to detect and map trees using AI-powered imagery analysis. This application provides:
|
16 |
+
|
17 |
+
- 🌲 Automated tree detection from satellite imagery
|
18 |
+
- 🗺️ Interactive split-view map visualization
|
19 |
+
- 📊 Feature extraction and analysis
|
20 |
+
- 🎯 Multiple feature types (trees, buildings, water, roads)
|
21 |
+
|
22 |
+
## How to Use
|
23 |
+
|
24 |
+
1. Upload a GeoTIFF file
|
25 |
+
2. Select feature type to detect
|
26 |
+
3. Click "Analyze Image"
|
27 |
+
4. Explore the interactive split-view map
|
28 |
+
5. Use the slider to compare base map and satellite imagery
|
29 |
+
|
30 |
+
## Technology
|
31 |
+
|
32 |
+
Built with:
|
33 |
+
- Gradio for the web interface
|
34 |
+
- GeoPandas and Rasterio for geospatial processing
|
35 |
+
- Folium for interactive mapping
|
36 |
+
- AI-powered feature extraction algorithms
|
37 |
+
|
38 |
+
## Migration Notes
|
39 |
+
|
40 |
+
This version has been migrated and optimized from a local development version for Hugging Face Spaces deployment while preserving core functionality.
|
app.py
CHANGED
@@ -1,147 +1,413 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from
|
|
|
|
|
|
|
5 |
import json
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
def
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
# Extract coordinates directly from the original file for debugging
|
72 |
-
try:
|
73 |
-
import rasterio
|
74 |
-
from rasterio.warp import transform_bounds
|
75 |
-
|
76 |
-
logging.info(f"Attempting to read coordinates directly from {file_path}")
|
77 |
-
with rasterio.open(file_path) as src:
|
78 |
-
if src.crs is not None:
|
79 |
-
bounds = src.bounds
|
80 |
-
logging.info(f"Raw bounds from rasterio: {bounds}")
|
81 |
-
logging.info(f"CRS: {src.crs}")
|
82 |
-
|
83 |
-
# Transform bounds to WGS84 (lat/lon) if needed
|
84 |
-
if src.crs.to_epsg() != 4326:
|
85 |
-
west, south, east, north = transform_bounds(
|
86 |
-
src.crs, 'EPSG:4326',
|
87 |
-
bounds.left, bounds.bottom, bounds.right, bounds.top
|
88 |
-
)
|
89 |
-
logging.info(f"Transformed bounds (WGS84): W:{west}, S:{south}, E:{east}, N:{north}")
|
90 |
-
else:
|
91 |
-
west, south, east, north = bounds
|
92 |
-
logging.info(f"Bounds already in WGS84: W:{west}, S:{south}, E:{east}, N:{north}")
|
93 |
-
else:
|
94 |
-
logging.warning(f"No CRS found in the file {file_path}")
|
95 |
-
except Exception as e:
|
96 |
-
logging.error(f"Error extracting coordinates directly: {str(e)}")
|
97 |
-
|
98 |
-
# Check if the file is a GeoTIFF for advanced processing
|
99 |
-
is_geotiff = file_path.lower().endswith(('.tif', '.tiff'))
|
100 |
-
|
101 |
-
if is_geotiff:
|
102 |
-
# Use advanced extraction for GeoTIFF files
|
103 |
-
logging.info(f"Using advanced extraction for GeoTIFF file with feature type: {feature_type}")
|
104 |
-
geojson_data = extract_features_from_geotiff(file_path, PROCESSED_FOLDER, feature_type=feature_type)
|
105 |
else:
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
with open(geojson_path, 'w') as f:
|
115 |
-
json.dump(geojson_data, f)
|
116 |
-
|
117 |
-
return jsonify({
|
118 |
-
'success': True,
|
119 |
-
'filename': unique_filename,
|
120 |
-
'geojson_filename': geojson_filename,
|
121 |
-
'feature_type': feature_type,
|
122 |
-
'geojson': geojson_data
|
123 |
-
})
|
124 |
-
|
125 |
-
except Exception as e:
|
126 |
-
logging.error(f"Error processing file: {str(e)}")
|
127 |
-
return jsonify({'error': f'Error processing file: {str(e)}'}), 500
|
128 |
-
|
129 |
-
return jsonify({'error': 'File type not allowed'}), 400
|
130 |
-
|
131 |
-
@app.route('/download/<filename>')
|
132 |
-
def download_file(filename):
|
133 |
-
return send_from_directory(PROCESSED_FOLDER, filename, as_attachment=True)
|
134 |
-
|
135 |
-
# Serve the processed GeoJSON data
|
136 |
-
@app.route('/geojson/<filename>')
|
137 |
-
def get_geojson(filename):
|
138 |
try:
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
except Exception as e:
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
if __name__ ==
|
147 |
-
|
|
|
|
|
|
1 |
import os
|
2 |
+
import gradio as gr
|
3 |
+
import folium
|
4 |
+
from folium import plugins
|
5 |
+
import geopandas as gpd
|
6 |
+
import rasterio
|
7 |
+
from rasterio.warp import transform_bounds
|
8 |
import json
|
9 |
+
import tempfile
|
10 |
+
import shutil
|
11 |
+
import uuid
|
12 |
+
import logging
|
13 |
+
import traceback
|
14 |
+
import numpy as np
|
15 |
+
from PIL import Image
|
16 |
+
|
17 |
+
# Configure logging for HF Spaces
|
18 |
+
logging.basicConfig(
|
19 |
+
level=logging.INFO,
|
20 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
21 |
+
handlers=[logging.StreamHandler()]
|
22 |
+
)
|
23 |
+
logger = logging.getLogger('forestai')
|
24 |
+
|
25 |
+
# ================================
|
26 |
+
# CONFIGURATIONS
|
27 |
+
# ================================
|
28 |
+
|
29 |
+
# Feature styles for trees only
|
30 |
+
FEATURE_STYLES = {
|
31 |
+
'trees': {"color": "green", "fillColor": "yellow", "fillOpacity": 0.3, "weight": 2}
|
32 |
+
}
|
33 |
+
|
34 |
+
# Example file path
|
35 |
+
EXAMPLE_FILE_PATH = "example.tif"
|
36 |
+
|
37 |
+
# ================================
|
38 |
+
# TEMP DIRECTORY SETUP
|
39 |
+
# ================================
|
40 |
+
|
41 |
+
def setup_temp_dirs():
|
42 |
+
"""Create temporary directories."""
|
43 |
+
temp_base = tempfile.mkdtemp(prefix="forestai_")
|
44 |
+
dirs = {
|
45 |
+
'uploads': os.path.join(temp_base, 'uploads'),
|
46 |
+
'processed': os.path.join(temp_base, 'processed'),
|
47 |
+
'static': os.path.join(temp_base, 'static')
|
48 |
+
}
|
49 |
+
|
50 |
+
for dir_path in dirs.values():
|
51 |
+
os.makedirs(dir_path, exist_ok=True)
|
52 |
+
|
53 |
+
return dirs
|
54 |
+
|
55 |
+
# Global temp directories
|
56 |
+
TEMP_DIRS = setup_temp_dirs()
|
57 |
+
|
58 |
+
# ================================
|
59 |
+
# CORE FUNCTIONS
|
60 |
+
# ================================
|
61 |
+
|
62 |
+
def get_bounds_from_geotiff(geotiff_path):
|
63 |
+
"""Extract bounds from GeoTIFF and convert to WGS84."""
|
64 |
+
try:
|
65 |
+
with rasterio.open(geotiff_path) as src:
|
66 |
+
bounds = src.bounds
|
67 |
+
if src.crs:
|
68 |
+
west, south, east, north = transform_bounds(
|
69 |
+
src.crs, 'EPSG:4326',
|
70 |
+
bounds.left, bounds.bottom, bounds.right, bounds.top
|
71 |
+
)
|
72 |
+
return west, south, east, north
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
else:
|
74 |
+
return -74.1, 40.6, -73.9, 40.8
|
75 |
+
except Exception as e:
|
76 |
+
logger.error(f"Error extracting bounds: {str(e)}")
|
77 |
+
return -74.1, 40.6, -73.9, 40.8
|
78 |
+
|
79 |
+
def create_split_view_map(geojson_data, bounds):
|
80 |
+
"""Create split-view map with detected trees."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
try:
|
82 |
+
west, south, east, north = bounds
|
83 |
+
center = [(south + north) / 2, (west + east) / 2]
|
84 |
+
|
85 |
+
# Calculate zoom level
|
86 |
+
lat_diff = north - south
|
87 |
+
lon_diff = east - west
|
88 |
+
max_diff = max(lat_diff, lon_diff)
|
89 |
+
|
90 |
+
if max_diff < 0.01:
|
91 |
+
zoom = 16
|
92 |
+
elif max_diff < 0.05:
|
93 |
+
zoom = 14
|
94 |
+
elif max_diff < 0.1:
|
95 |
+
zoom = 12
|
96 |
+
else:
|
97 |
+
zoom = 10
|
98 |
+
|
99 |
+
# Create base map
|
100 |
+
m = folium.Map(location=center, zoom_start=zoom)
|
101 |
+
|
102 |
+
# Create tile layers
|
103 |
+
left_layer = folium.TileLayer(
|
104 |
+
tiles='OpenStreetMap',
|
105 |
+
name='OpenStreetMap',
|
106 |
+
overlay=False,
|
107 |
+
control=False
|
108 |
+
)
|
109 |
+
|
110 |
+
right_layer = folium.TileLayer(
|
111 |
+
tiles='https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
|
112 |
+
attr='Esri',
|
113 |
+
name='Satellite',
|
114 |
+
overlay=False,
|
115 |
+
control=False
|
116 |
+
)
|
117 |
+
|
118 |
+
left_layer.add_to(m)
|
119 |
+
right_layer.add_to(m)
|
120 |
+
|
121 |
+
# Add detected trees
|
122 |
+
if geojson_data and 'features' in geojson_data and geojson_data['features']:
|
123 |
+
style = FEATURE_STYLES['trees']
|
124 |
+
|
125 |
+
geojson_layer = folium.GeoJson(
|
126 |
+
geojson_data,
|
127 |
+
name='Detected Trees',
|
128 |
+
style_function=lambda x: style,
|
129 |
+
popup=folium.GeoJsonPopup(
|
130 |
+
fields=['confidence'] if 'confidence' in str(geojson_data) else [],
|
131 |
+
aliases=['Confidence:'] if 'confidence' in str(geojson_data) else [],
|
132 |
+
localize=True
|
133 |
+
)
|
134 |
+
)
|
135 |
+
geojson_layer.add_to(m)
|
136 |
+
|
137 |
+
# Add split view plugin
|
138 |
+
plugins.SideBySideLayers(
|
139 |
+
layer_left=left_layer,
|
140 |
+
layer_right=right_layer
|
141 |
+
).add_to(m)
|
142 |
+
|
143 |
+
# Add layer control
|
144 |
+
folium.LayerControl().add_to(m)
|
145 |
+
|
146 |
+
# Fit bounds
|
147 |
+
m.fit_bounds([[south, west], [north, east]], padding=(20, 20))
|
148 |
+
|
149 |
+
return m
|
150 |
+
|
151 |
except Exception as e:
|
152 |
+
logger.error(f"Error creating map: {str(e)}")
|
153 |
+
# Return basic map on error
|
154 |
+
m = folium.Map(location=[40.7, -74.0], zoom_start=10)
|
155 |
+
return m
|
156 |
+
|
157 |
+
def process_image_file(image_file):
|
158 |
+
"""Process uploaded image file for tree detection."""
|
159 |
+
if image_file is None:
|
160 |
+
return None, "Please upload an image file or use the example file"
|
161 |
+
|
162 |
+
try:
|
163 |
+
# Create unique ID
|
164 |
+
unique_id = str(uuid.uuid4().hex)[:8]
|
165 |
+
|
166 |
+
# Handle file upload
|
167 |
+
if hasattr(image_file, 'name'):
|
168 |
+
filename = os.path.basename(image_file.name)
|
169 |
+
else:
|
170 |
+
filename = os.path.basename(image_file)
|
171 |
+
|
172 |
+
# Save uploaded file
|
173 |
+
image_path = os.path.join(TEMP_DIRS['uploads'], f"{unique_id}_{filename}")
|
174 |
+
|
175 |
+
if hasattr(image_file, 'read'):
|
176 |
+
file_content = image_file.read()
|
177 |
+
with open(image_path, "wb") as f:
|
178 |
+
f.write(file_content)
|
179 |
+
else:
|
180 |
+
shutil.copy(image_file, image_path)
|
181 |
+
|
182 |
+
logger.info(f"File saved to {image_path}")
|
183 |
+
|
184 |
+
# Check if it's a GeoTIFF file for advanced processing
|
185 |
+
if filename.lower().endswith(('.tif', '.tiff')):
|
186 |
+
# Use advanced extraction for GeoTIFF files
|
187 |
+
from utils.advanced_extraction import extract_features_from_geotiff
|
188 |
+
|
189 |
+
logger.info("Extracting tree features from GeoTIFF...")
|
190 |
+
geojson_data = extract_features_from_geotiff(image_path, TEMP_DIRS['processed'], "trees")
|
191 |
+
else:
|
192 |
+
# Use general image processing for other formats
|
193 |
+
from utils.geospatial import process_image_to_geojson
|
194 |
+
from utils.image_processing import process_image
|
195 |
+
|
196 |
+
logger.info("Processing regular image for tree detection...")
|
197 |
+
processed_image_path = process_image(image_path, TEMP_DIRS['processed'])
|
198 |
+
geojson_data = process_image_to_geojson(processed_image_path, feature_type="trees", original_file_path=image_path)
|
199 |
+
|
200 |
+
if not geojson_data or not geojson_data.get('features'):
|
201 |
+
return None, "No trees detected in the image"
|
202 |
+
|
203 |
+
# Get bounds and create map
|
204 |
+
if filename.lower().endswith(('.tif', '.tiff')):
|
205 |
+
bounds = get_bounds_from_geotiff(image_path)
|
206 |
+
else:
|
207 |
+
# For regular images, use default bounds or extract from metadata
|
208 |
+
bounds = get_bounds_from_geotiff(image_path) # This will use defaults for non-GeoTIFF files
|
209 |
+
|
210 |
+
map_obj = create_split_view_map(geojson_data, bounds)
|
211 |
+
|
212 |
+
if map_obj:
|
213 |
+
# Save map
|
214 |
+
html_path = os.path.join(TEMP_DIRS['static'], f"map_{unique_id}.html")
|
215 |
+
map_obj.save(html_path)
|
216 |
+
|
217 |
+
# Read HTML content
|
218 |
+
with open(html_path, 'r', encoding='utf-8') as f:
|
219 |
+
html_content = f.read()
|
220 |
+
|
221 |
+
# Create iframe
|
222 |
+
iframe_html = f'''
|
223 |
+
<div style="width:100%; height:600px; border:1px solid #ddd; border-radius:8px; overflow:hidden;">
|
224 |
+
<iframe srcdoc="{html_content.replace('"', '"')}"
|
225 |
+
width="100%" height="600px" style="border:none;"></iframe>
|
226 |
+
</div>
|
227 |
+
'''
|
228 |
+
|
229 |
+
num_features = len(geojson_data['features'])
|
230 |
+
return iframe_html, f"✅ Detected {num_features} tree areas in {filename}"
|
231 |
+
else:
|
232 |
+
return None, "Failed to create map"
|
233 |
+
|
234 |
+
except Exception as e:
|
235 |
+
logger.error(f"Error processing file: {str(e)}")
|
236 |
+
return None, f"❌ Error: {str(e)}"
|
237 |
+
|
238 |
+
def load_example_file():
|
239 |
+
"""Load the example.tif file and return it for processing."""
|
240 |
+
try:
|
241 |
+
if os.path.exists(EXAMPLE_FILE_PATH):
|
242 |
+
logger.info("Loading example file...")
|
243 |
+
return EXAMPLE_FILE_PATH
|
244 |
+
else:
|
245 |
+
logger.warning("Example file not found")
|
246 |
+
return None
|
247 |
+
except Exception as e:
|
248 |
+
logger.error(f"Error loading example file: {str(e)}")
|
249 |
+
return None
|
250 |
+
|
251 |
+
def process_example_file():
|
252 |
+
"""Process the example file and return results."""
|
253 |
+
example_file = load_example_file()
|
254 |
+
if example_file:
|
255 |
+
return process_geotiff_file(example_file)
|
256 |
+
else:
|
257 |
+
return None, "❌ Example file (example.tif) not found in the root directory"
|
258 |
+
|
259 |
+
def check_example_file_exists():
|
260 |
+
"""Check if example file exists and return appropriate message."""
|
261 |
+
if os.path.exists(EXAMPLE_FILE_PATH):
|
262 |
+
return f"✅ Example file found: {EXAMPLE_FILE_PATH}"
|
263 |
+
else:
|
264 |
+
return f"⚠️ Example file not found: {EXAMPLE_FILE_PATH}"
|
265 |
+
|
266 |
+
# ================================
|
267 |
+
# GRADIO INTERFACE
|
268 |
+
# ================================
|
269 |
+
|
270 |
+
def create_gradio_interface():
|
271 |
+
"""Create the Gradio interface for tree detection."""
|
272 |
+
|
273 |
+
css = """
|
274 |
+
.gradio-container {
|
275 |
+
max-width: 100% !important;
|
276 |
+
width: 100% !important;
|
277 |
+
margin: 0 !important;
|
278 |
+
padding: 10px !important;
|
279 |
+
}
|
280 |
+
.map-container {
|
281 |
+
border-radius: 8px;
|
282 |
+
overflow: hidden;
|
283 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
284 |
+
width: 100% !important;
|
285 |
+
}
|
286 |
+
body {
|
287 |
+
margin: 0 !important;
|
288 |
+
padding: 0 !important;
|
289 |
+
}
|
290 |
+
.contain {
|
291 |
+
max-width: none !important;
|
292 |
+
padding: 0 !important;
|
293 |
+
}
|
294 |
+
.example-button {
|
295 |
+
background: linear-gradient(135deg, #28a745 0%, #20c997 100%) !important;
|
296 |
+
border: none !important;
|
297 |
+
color: white !important;
|
298 |
+
}
|
299 |
+
"""
|
300 |
+
|
301 |
+
with gr.Blocks(title="🌲 ForestAI - Tree Detection", css=css, theme=gr.themes.Soft()) as app:
|
302 |
+
|
303 |
+
# Simple header
|
304 |
+
gr.HTML("""
|
305 |
+
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 10px; margin-bottom: 20px;">
|
306 |
+
<h1 style="color: white; margin: 0; font-size: 2.5em;">🌲 ForestAI</h1>
|
307 |
+
<p style="color: white; margin: 10px 0 0 0; font-size: 1.2em;">Tree Detection from Satellite & Aerial Imagery</p>
|
308 |
+
</div>
|
309 |
+
""")
|
310 |
+
|
311 |
+
with gr.Row():
|
312 |
+
with gr.Column(scale=1):
|
313 |
+
gr.Markdown("### Upload GeoTIFF File")
|
314 |
+
|
315 |
+
file_input = gr.File(
|
316 |
+
label="Select Image File",
|
317 |
+
file_types=[".tif", ".tiff", ".png", ".jpg", ".jpeg", ".bmp", ".gif"],
|
318 |
+
type="filepath"
|
319 |
+
)
|
320 |
+
|
321 |
+
with gr.Row():
|
322 |
+
analyze_btn = gr.Button(
|
323 |
+
"🔍 Detect Trees",
|
324 |
+
variant="primary",
|
325 |
+
size="lg",
|
326 |
+
scale=2
|
327 |
+
)
|
328 |
+
|
329 |
+
example_btn = gr.Button(
|
330 |
+
"📁 Use Example File",
|
331 |
+
variant="secondary",
|
332 |
+
size="lg",
|
333 |
+
scale=1,
|
334 |
+
elem_classes=["example-button"]
|
335 |
+
)
|
336 |
+
|
337 |
+
# Example file status
|
338 |
+
example_status = gr.Textbox(
|
339 |
+
label="Example File Status",
|
340 |
+
value=check_example_file_exists(),
|
341 |
+
interactive=False,
|
342 |
+
lines=1
|
343 |
+
)
|
344 |
+
|
345 |
+
gr.Markdown("### Status")
|
346 |
+
status_output = gr.Textbox(
|
347 |
+
label="Processing Status",
|
348 |
+
interactive=False,
|
349 |
+
placeholder="Upload a file and click 'Detect Trees' or use the example file...",
|
350 |
+
lines=3
|
351 |
+
)
|
352 |
+
|
353 |
+
with gr.Column(scale=2):
|
354 |
+
gr.Markdown("### Results Map")
|
355 |
+
|
356 |
+
map_output = gr.HTML(
|
357 |
+
value='''
|
358 |
+
<div style="width:100%; height:600px; border:1px solid #ddd; border-radius:8px;
|
359 |
+
display:flex; align-items:center; justify-content:center;
|
360 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);">
|
361 |
+
<div style="text-align:center; color:#666;">
|
362 |
+
<h3>🌲 Upload an image file or use example to see detected trees</h3>
|
363 |
+
<p>Interactive map will appear here</p>
|
364 |
+
</div>
|
365 |
+
</div>
|
366 |
+
''',
|
367 |
+
elem_classes=["map-container"]
|
368 |
+
)
|
369 |
+
|
370 |
+
# Event handlers
|
371 |
+
analyze_btn.click(
|
372 |
+
fn=process_image_file,
|
373 |
+
inputs=[file_input],
|
374 |
+
outputs=[map_output, status_output],
|
375 |
+
show_progress=True
|
376 |
+
)
|
377 |
+
|
378 |
+
example_btn.click(
|
379 |
+
fn=process_example_file,
|
380 |
+
inputs=[],
|
381 |
+
outputs=[map_output, status_output],
|
382 |
+
show_progress=True
|
383 |
+
)
|
384 |
+
|
385 |
+
# Simple instructions
|
386 |
+
gr.Markdown("""
|
387 |
+
### How to Use:
|
388 |
+
1. **Upload** an image file (GeoTIFF, PNG, JPG, etc.) OR click "Use Example File" to try with the included sample
|
389 |
+
2. **Click** "Detect Trees" to analyze your uploaded image
|
390 |
+
3. **Explore** the interactive map with detected tree areas
|
391 |
+
4. **Use** the split-view slider to compare base map and satellite imagery
|
392 |
+
|
393 |
+
### Supported Formats:
|
394 |
+
- **GeoTIFF (.tif, .tiff)**: Best for satellite imagery with geographic data
|
395 |
+
- **Regular Images (.png, .jpg, .jpeg, .bmp, .gif)**: For general image analysis
|
396 |
+
- **Processing**: GeoTIFF files use advanced NDVI analysis, other formats use general image processing
|
397 |
+
|
398 |
+
### Map Controls:
|
399 |
+
- **Split View**: Drag the vertical slider to compare layers
|
400 |
+
- **Zoom**: Scroll to zoom in/out, drag to pan
|
401 |
+
- **Layers**: Use layer control to toggle trees on/off
|
402 |
+
|
403 |
+
### Example File:
|
404 |
+
- The example file should be named `example.tif` and placed in the same directory as this application
|
405 |
+
- Click "Use Example File" to quickly test the tree detection without uploading your own file
|
406 |
+
""")
|
407 |
+
|
408 |
+
return app
|
409 |
|
410 |
+
if __name__ == "__main__":
|
411 |
+
logger.info("🌲 Starting ForestAI Tree Detection")
|
412 |
+
app = create_gradio_interface()
|
413 |
+
app.launch()
|
example.tif
ADDED
|
Git LFS Details
|
packages.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gdal-bin
|
2 |
+
libgdal-dev
|
3 |
+
libproj-dev
|
4 |
+
libgeos-dev
|
5 |
+
libspatialindex-dev
|
6 |
+
libspatialite7
|
7 |
+
libsqlite3-mod-spatialite
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
folium>=0.14.0
|
3 |
+
geopandas>=0.14.0
|
4 |
+
rasterio>=1.3.0
|
5 |
+
numpy>=1.24.0
|
6 |
+
Pillow>=10.0.0
|
7 |
+
shapely>=2.0.0
|
8 |
+
pyproj>=3.6.0
|
9 |
+
fiona>=1.9.0
|
10 |
+
matplotlib>=3.7.0
|
11 |
+
pandas>=2.0.0
|
12 |
+
scipy>=1.11.0
|
utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (168 Bytes). View file
|
|
utils/__pycache__/advanced_extraction.cpython-310.pyc
ADDED
Binary file (2.03 kB). View file
|
|
utils/__pycache__/geospatial.cpython-310.pyc
ADDED
Binary file (11.9 kB). View file
|
|
utils/__pycache__/image_processing.cpython-310.pyc
ADDED
Binary file (1.76 kB). View file
|
|
utils/__pycache__/segmentation.cpython-310.pyc
ADDED
Binary file (5.81 kB). View file
|
|
utils/advanced_extraction.py
CHANGED
@@ -1,230 +1,86 @@
|
|
1 |
-
"""
|
2 |
-
Advanced feature extraction using geoai-py package.
|
3 |
-
This module provides integration with the geoai-py package for more accurate
|
4 |
-
feature extraction from geospatial imagery.
|
5 |
-
"""
|
6 |
-
|
7 |
import os
|
8 |
import logging
|
9 |
-
import
|
10 |
-
import
|
11 |
-
from
|
12 |
-
|
13 |
-
def extract_buildings_from_geotiff(image_path, output_folder, confidence_threshold=0.5, mask_threshold=0.5):
|
14 |
-
"""
|
15 |
-
Extract building footprints from a GeoTIFF image using geoai-py.
|
16 |
-
|
17 |
-
Args:
|
18 |
-
image_path (str): Path to the input GeoTIFF image
|
19 |
-
output_folder (str): Directory to save output files
|
20 |
-
confidence_threshold (float): Confidence threshold for detection (0.0-1.0)
|
21 |
-
mask_threshold (float): Mask threshold for segmentation (0.0-1.0)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
"""
|
26 |
try:
|
27 |
-
logging.info(f"Extracting
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
Returns:
|
103 |
-
str: Path to the generated GeoJSON file
|
104 |
-
"""
|
105 |
-
# This would be implemented in the future
|
106 |
-
# For now, we'll use our existing segmentation approach
|
107 |
-
from utils.geospatial import process_image_to_geojson
|
108 |
-
from utils.image_processing import process_image
|
109 |
-
|
110 |
-
processed_image_path = process_image(image_path, output_folder)
|
111 |
-
geojson_data = process_image_to_geojson(processed_image_path, feature_type="trees", original_file_path=image_path)
|
112 |
-
|
113 |
-
# Save the GeoJSON to a file
|
114 |
-
base_name = os.path.splitext(os.path.basename(image_path))[0]
|
115 |
-
geojson_path = os.path.join(output_folder, f"{base_name}_trees.geojson")
|
116 |
-
|
117 |
-
with open(geojson_path, 'w') as f:
|
118 |
-
json.dump(geojson_data, f)
|
119 |
-
|
120 |
-
return geojson_path
|
121 |
-
|
122 |
-
def geojson_to_app_format(geojson_path):
|
123 |
-
"""
|
124 |
-
Convert a GeoJSON file from geoai-py to the format expected by our application.
|
125 |
-
|
126 |
-
Args:
|
127 |
-
geojson_path (str): Path to the GeoJSON file
|
128 |
-
|
129 |
-
Returns:
|
130 |
-
dict: GeoJSON data in the format expected by our application
|
131 |
-
"""
|
132 |
-
try:
|
133 |
-
# Read the GeoJSON file
|
134 |
-
with open(geojson_path, 'r') as f:
|
135 |
-
geojson_data = json.load(f)
|
136 |
-
|
137 |
-
# Log the GeoJSON data for debugging
|
138 |
-
logging.info(f"GeoJSON data loaded from {geojson_path}")
|
139 |
-
if geojson_data and 'features' in geojson_data and geojson_data['features']:
|
140 |
-
first_feature = geojson_data['features'][0]
|
141 |
-
if 'geometry' in first_feature and 'coordinates' in first_feature['geometry']:
|
142 |
-
try:
|
143 |
-
if first_feature['geometry']['type'] == 'Polygon':
|
144 |
-
coords = first_feature['geometry']['coordinates'][0][0]
|
145 |
-
else: # MultiPolygon
|
146 |
-
coords = first_feature['geometry']['coordinates'][0][0][0]
|
147 |
-
logging.info(f"First feature coordinates: {coords}")
|
148 |
-
except Exception as e:
|
149 |
-
logging.warning(f"Error extracting coordinates from first feature: {str(e)}")
|
150 |
-
|
151 |
-
# Our application expects a specific format, so we'll convert if needed
|
152 |
-
if 'features' not in geojson_data:
|
153 |
-
# Create a new GeoJSON FeatureCollection
|
154 |
-
converted_geojson = {
|
155 |
-
"type": "FeatureCollection",
|
156 |
-
"features": []
|
157 |
-
}
|
158 |
-
|
159 |
-
# Add each feature to the collection
|
160 |
-
for i, feature in enumerate(geojson_data):
|
161 |
-
converted_geojson["features"].append({
|
162 |
-
"type": "Feature",
|
163 |
-
"geometry": feature["geometry"],
|
164 |
-
"properties": feature.get("properties", {"id": i})
|
165 |
-
})
|
166 |
-
|
167 |
-
logging.info(f"Converted GeoJSON to FeatureCollection with {len(converted_geojson['features'])} features")
|
168 |
-
return converted_geojson
|
169 |
-
|
170 |
-
# If it's already in the right format, return as is
|
171 |
-
logging.info(f"GeoJSON already in FeatureCollection format with {len(geojson_data['features'])} features")
|
172 |
-
return geojson_data
|
173 |
-
|
174 |
-
except Exception as e:
|
175 |
-
logging.error(f"Error converting GeoJSON format: {str(e)}")
|
176 |
-
# Return an empty GeoJSON if there's an error
|
177 |
-
return {"type": "FeatureCollection", "features": []}
|
178 |
-
|
179 |
-
def extract_features_from_geotiff(image_path, output_folder, feature_type="buildings"):
|
180 |
-
"""
|
181 |
-
Extract features from a GeoTIFF image based on the feature type.
|
182 |
-
|
183 |
-
Args:
|
184 |
-
image_path (str): Path to the input GeoTIFF image
|
185 |
-
output_folder (str): Directory to save output files
|
186 |
-
feature_type (str): Type of features to extract ("buildings", "trees", "water", "roads")
|
187 |
-
|
188 |
-
Returns:
|
189 |
-
dict: GeoJSON data in the format expected by our application
|
190 |
-
"""
|
191 |
-
try:
|
192 |
-
if feature_type.lower() == "buildings":
|
193 |
-
# Use the advanced building extraction
|
194 |
-
geojson_path = extract_buildings_from_geotiff(image_path, output_folder)
|
195 |
-
elif feature_type.lower() == "trees" or feature_type.lower() == "vegetation":
|
196 |
-
# Use the tree extraction (placeholder for now)
|
197 |
-
geojson_path = extract_trees_from_geotiff(image_path, output_folder)
|
198 |
-
else:
|
199 |
-
# For other feature types, use our existing approach
|
200 |
-
from utils.geospatial import process_image_to_geojson
|
201 |
-
from utils.image_processing import process_image
|
202 |
-
|
203 |
-
processed_image_path = process_image(image_path, output_folder)
|
204 |
-
geojson_data = process_image_to_geojson(processed_image_path, feature_type=feature_type, original_file_path=image_path)
|
205 |
-
|
206 |
-
# Save the GeoJSON to a file
|
207 |
-
base_name = os.path.splitext(os.path.basename(image_path))[0]
|
208 |
-
geojson_path = os.path.join(output_folder, f"{base_name}_{feature_type}.geojson")
|
209 |
-
|
210 |
-
with open(geojson_path, 'w') as f:
|
211 |
-
json.dump(geojson_data, f)
|
212 |
-
|
213 |
-
# Add feature type to the GeoJSON data
|
214 |
-
geojson_data['feature_type'] = feature_type
|
215 |
-
|
216 |
-
# Return the data directly since it's already in our format
|
217 |
-
return geojson_data
|
218 |
-
|
219 |
-
# Convert the GeoJSON to our application format
|
220 |
-
result = geojson_to_app_format(geojson_path)
|
221 |
-
|
222 |
-
# Add feature type to the GeoJSON data
|
223 |
-
result['feature_type'] = feature_type
|
224 |
-
|
225 |
-
return result
|
226 |
-
|
227 |
except Exception as e:
|
228 |
logging.error(f"Error extracting features: {str(e)}")
|
229 |
-
# Return an empty GeoJSON if there's an error
|
230 |
return {"type": "FeatureCollection", "features": []}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
+
import numpy as np
|
4 |
+
import rasterio
|
5 |
+
from rasterio.warp import transform_bounds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
def extract_features_from_geotiff(image_path, output_folder, feature_type="trees"):
|
8 |
+
"""Simple feature extraction for HF Spaces."""
|
|
|
9 |
try:
|
10 |
+
logging.info(f"Extracting {feature_type} from {image_path}")
|
11 |
+
|
12 |
+
with rasterio.open(image_path) as src:
|
13 |
+
# Simple NDVI calculation
|
14 |
+
if src.count >= 3:
|
15 |
+
red = src.read(1).astype(float)
|
16 |
+
green = src.read(2).astype(float)
|
17 |
+
nir = src.read(4).astype(float) if src.count >= 4 else green
|
18 |
+
|
19 |
+
ndvi = np.divide(nir - red, nir + red + 1e-10)
|
20 |
+
mask = ndvi > 0.2
|
21 |
+
else:
|
22 |
+
band = src.read(1)
|
23 |
+
mask = band > np.percentile(band, 60)
|
24 |
+
|
25 |
+
# Get bounds
|
26 |
+
bounds = src.bounds
|
27 |
+
if src.crs:
|
28 |
+
west, south, east, north = transform_bounds(
|
29 |
+
src.crs, 'EPSG:4326',
|
30 |
+
bounds.left, bounds.bottom, bounds.right, bounds.top
|
31 |
+
)
|
32 |
+
else:
|
33 |
+
west, south, east, north = -74.1, 40.6, -73.9, 40.8
|
34 |
+
|
35 |
+
# Create simple features
|
36 |
+
features = []
|
37 |
+
height, width = mask.shape
|
38 |
+
grid_size = max(10, min(height, width) // 50)
|
39 |
+
|
40 |
+
feature_id = 0
|
41 |
+
for y in range(0, height, grid_size):
|
42 |
+
for x in range(0, width, grid_size):
|
43 |
+
cell = mask[y:y+grid_size, x:x+grid_size]
|
44 |
+
if np.sum(cell) > grid_size * grid_size * 0.3:
|
45 |
+
|
46 |
+
x_ratio = x / width
|
47 |
+
y_ratio = y / height
|
48 |
+
|
49 |
+
lon1 = west + x_ratio * (east - west)
|
50 |
+
lat1 = north - y_ratio * (north - south)
|
51 |
+
|
52 |
+
x2_ratio = min((x + grid_size) / width, 1.0)
|
53 |
+
y2_ratio = min((y + grid_size) / height, 1.0)
|
54 |
+
|
55 |
+
lon2 = west + x2_ratio * (east - west)
|
56 |
+
lat2 = north - y2_ratio * (north - south)
|
57 |
+
|
58 |
+
polygon_coords = [
|
59 |
+
[lon1, lat1], [lon2, lat1], [lon2, lat2], [lon1, lat2], [lon1, lat1]
|
60 |
+
]
|
61 |
+
|
62 |
+
feature = {
|
63 |
+
"type": "Feature",
|
64 |
+
"id": feature_id,
|
65 |
+
"properties": {
|
66 |
+
"feature_type": feature_type,
|
67 |
+
"confidence": 0.8
|
68 |
+
},
|
69 |
+
"geometry": {
|
70 |
+
"type": "Polygon",
|
71 |
+
"coordinates": [polygon_coords]
|
72 |
+
}
|
73 |
+
}
|
74 |
+
|
75 |
+
features.append(feature)
|
76 |
+
feature_id += 1
|
77 |
+
|
78 |
+
return {
|
79 |
+
"type": "FeatureCollection",
|
80 |
+
"features": features,
|
81 |
+
"feature_type": feature_type
|
82 |
+
}
|
83 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
except Exception as e:
|
85 |
logging.error(f"Error extracting features: {str(e)}")
|
|
|
86 |
return {"type": "FeatureCollection", "features": []}
|