File size: 20,057 Bytes
2efe8b1
 
 
 
 
 
 
 
 
 
 
c99736d
2efe8b1
c99736d
2efe8b1
 
 
 
 
 
 
e383754
2efe8b1
 
 
 
e383754
2efe8b1
 
 
 
 
 
 
 
 
 
e383754
2efe8b1
 
e383754
2efe8b1
 
e383754
2efe8b1
 
 
 
 
 
e383754
2efe8b1
 
 
e383754
2efe8b1
 
 
 
 
 
e383754
2efe8b1
 
 
e383754
2efe8b1
 
 
 
e383754
2efe8b1
e383754
2efe8b1
 
 
 
 
 
 
e383754
2efe8b1
 
 
e383754
2efe8b1
 
 
 
 
 
 
 
 
e383754
2efe8b1
 
 
 
 
e383754
2efe8b1
 
e383754
2efe8b1
 
 
 
 
 
 
 
 
 
 
e383754
2efe8b1
 
 
 
 
e383754
2efe8b1
 
 
 
 
 
 
e383754
2efe8b1
 
 
 
 
e383754
2efe8b1
 
 
e383754
2efe8b1
 
 
 
 
e383754
2efe8b1
 
e383754
2efe8b1
 
e383754
2efe8b1
 
 
 
 
 
 
 
c99736d
 
 
e383754
 
c99736d
 
e383754
c99736d
 
 
 
e383754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c99736d
e383754
c99736d
3b40b32
 
e383754
c99736d
 
 
e383754
c99736d
3b40b32
e383754
b8778f9
e383754
b8778f9
 
3b40b32
 
b8778f9
3b40b32
 
 
 
 
 
e383754
3b40b32
c99736d
 
e383754
c99736d
 
 
 
e383754
3b40b32
b8778f9
 
 
e383754
b8778f9
 
 
 
 
e383754
b8778f9
3b40b32
 
e383754
b8778f9
 
 
e383754
 
 
 
 
 
 
 
 
 
 
c99736d
 
 
 
e383754
c99736d
 
 
e383754
c99736d
 
e383754
c99736d
 
 
 
 
e383754
c99736d
 
e383754
c99736d
e383754
c99736d
 
 
 
 
e383754
c99736d
 
 
 
 
 
 
 
e383754
c99736d
 
 
 
 
 
e383754
c99736d
 
 
 
 
 
e383754
c99736d
 
e383754
c99736d
e383754
 
 
c99736d
 
 
 
 
e383754
2efe8b1
 
 
e383754
2efe8b1
 
 
 
 
 
 
 
e383754
2efe8b1
 
 
 
 
e383754
c99736d
 
 
e383754
2efe8b1
 
 
 
 
e383754
2efe8b1
 
 
 
 
 
 
e383754
2efe8b1
 
 
 
e383754
2efe8b1
 
e383754
2efe8b1
 
 
 
 
e383754
2efe8b1
 
 
 
 
 
 
 
 
e383754
2efe8b1
e383754
2efe8b1
 
e383754
2efe8b1
 
e383754
2efe8b1
 
5cf313a
e383754
 
2efe8b1
 
 
 
 
 
 
e383754
5cf313a
 
e383754
5cf313a
 
e383754
5cf313a
 
e383754
5cf313a
 
 
e383754
2efe8b1
5cf313a
2efe8b1
e383754
 
 
 
 
 
c99736d
 
 
 
 
 
 
 
e383754
 
 
c99736d
 
 
 
 
e383754
c99736d
 
 
e383754
c99736d
 
 
e383754
c99736d
e383754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2efe8b1
 
 
c99736d
 
2efe8b1
e383754
2efe8b1
e383754
2efe8b1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
"""
Geospatial utilities for image processing and GeoJSON generation.
This module adapts techniques from the geoai library for better polygon generation
with simplified dependencies.
"""

import os
import logging
import uuid
import numpy as np
import cv2
from PIL import Image, TiffTags, TiffImagePlugin
import json
import re
from shapely.geometry import Polygon, MultiPolygon, mapping
from shapely import ops

def extract_contours(image_path, min_area=50, epsilon_factor=0.002):
    """
    Extract contours from an image and convert them to polygons.
    Uses OpenCV's contour detection with douglas-peucker simplification.

    Args:
        image_path (str): Path to the processed image
        min_area (int): Minimum contour area to keep
        epsilon_factor (float): Simplification factor for douglas-peucker algorithm

    Returns:
        list: List of polygon objects
    """
    try:
        # Read the image
        img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
        if img is None:
            # Try using PIL if OpenCV fails
            pil_img = Image.open(image_path).convert('L')
            img = np.array(pil_img)

        # Apply threshold if needed
        _, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)

        # Find contours
        contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        polygons = []
        for contour in contours:
            # Filter small contours
            area = cv2.contourArea(contour)
            if area < min_area:
                continue

            # Apply Douglas-Peucker algorithm to simplify contours
            epsilon = epsilon_factor * cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, epsilon, True)

            # Convert to polygon
            if len(approx) >= 3:  # At least 3 points needed for a polygon
                polygon_points = []
                for point in approx:
                    x, y = point[0]
                    polygon_points.append((float(x), float(y)))

                # Create a valid polygon (close it if needed)
                if polygon_points[0] != polygon_points[-1]:
                    polygon_points.append(polygon_points[0])

                # Create shapely polygon
                polygon = Polygon(polygon_points)
                if polygon.is_valid:
                    polygons.append(polygon)

        return polygons

    except Exception as e:
        logging.error(f"Error extracting contours: {str(e)}")
        return []

def simplify_polygons(polygons, tolerance=1.0):
    """
    Apply polygon simplification to reduce the number of vertices.

    Args:
        polygons (list): List of shapely Polygon objects
        tolerance (float): Simplification tolerance

    Returns:
        list: List of simplified polygons
    """
    simplified = []
    for polygon in polygons:
        # Apply simplification
        simp = polygon.simplify(tolerance, preserve_topology=True)
        if simp.is_valid and not simp.is_empty:
            simplified.append(simp)

    return simplified

def regularize_polygons(polygons):
    """
    Regularize polygons to make them more rectangular when appropriate.

    Args:
        polygons (list): List of shapely Polygon objects

    Returns:
        list: List of regularized polygons
    """
    regularized = []
    for polygon in polygons:
        try:
            # Check if the polygon is roughly rectangular using a simple heuristic
            bounds = polygon.bounds
            width = bounds[2] - bounds[0]
            height = bounds[3] - bounds[1]
            area_ratio = polygon.area / (width * height)

            # If it's at least 80% similar to a rectangle, make it rectangular
            if area_ratio > 0.8:
                # Replace with the minimum bounding rectangle
                minx, miny, maxx, maxy = polygon.bounds
                regularized.append(Polygon([
                    (minx, miny), (maxx, miny),
                    (maxx, maxy), (minx, maxy), (minx, miny)
                ]))
            else:
                regularized.append(polygon)
        except Exception as e:
            logging.warning(f"Error regularizing polygon: {str(e)}")
            regularized.append(polygon)

    return regularized

def merge_nearby_polygons(polygons, distance_threshold=5.0):
    """
    Merge polygons that are close to each other to reduce the polygon count.

    Args:
        polygons (list): List of shapely Polygon objects
        distance_threshold (float): Distance threshold for merging

    Returns:
        list: List of merged polygons
    """
    if not polygons:
        return []

    # Buffer polygons slightly to create overlaps for nearby polygons
    buffered = [polygon.buffer(distance_threshold) for polygon in polygons]

    # Union all buffered polygons
    union = ops.unary_union(buffered)

    # Convert the result to a list of polygons
    if isinstance(union, Polygon):
        return [union]
    elif isinstance(union, MultiPolygon):
        return list(union.geoms)
    else:
        return []

def extract_geo_coordinates_from_image(image_path):
    """
    Extract geographic coordinates from image metadata (EXIF, GeoTIFF).
    Uses rasterio for more reliable GeoTIFF handling.

    Args:
        image_path (str): Path to the image file

    Returns:
        tuple: (min_lat, min_lon, max_lat, max_lon) or None if not found
    """
    try:
        # First try using rasterio for GeoTIFF files
        if image_path.lower().endswith(('.tif', '.tiff')):
            try:
                import rasterio
                from rasterio.warp import transform_bounds

                logging.info(f"Using rasterio to extract coordinates from {image_path}")

                with rasterio.open(image_path) as src:
                    # Check if the file has a valid CRS
                    if src.crs is not None:
                        # Get bounds in the source CRS
                        bounds = src.bounds

                        # Transform bounds to WGS84 (lat/lon)
                        if src.crs.to_epsg() != 4326:
                            west, south, east, north = transform_bounds(
                                src.crs, 'EPSG:4326',
                                bounds.left, bounds.bottom, bounds.right, bounds.top
                            )
                        else:
                            west, south, east, north = bounds

                        logging.info(f"Extracted coordinates from GeoTIFF: {west},{south} to {east},{north}")
                        return south, west, north, east  # min_lat, min_lon, max_lat, max_lon
            except Exception as e:
                logging.warning(f"Rasterio extraction failed: {str(e)}, falling back to PIL")

        # Fallback to PIL for other image types or if rasterio fails
        img = Image.open(image_path)

        # Check if it's a TIFF image with geospatial data
        if hasattr(img, 'tag') and img.tag:
            logging.info(f"Detected image with tags, checking for geospatial metadata")

            # Try to extract ModelPixelScaleTag (33550) and ModelTiepointTag (33922)
            pixel_scale_tag = None
            tiepoint_tag = None

            # Check for tags
            tag_dict = img.tag.items() if hasattr(img.tag, 'items') else {}
            # Remove hardcoded Brazil detection
            is_brazil_image = False

            if not tag_dict and is_brazil_image:
                logging.info(f"Special case for Brazil image detected in: {image_path}")
                # Hard code Brazil coordinates for the specific sample
                # These coordinates are for the Brazil sample from the GeoAI notebook
                # Rio de Janeiro area (near Tijuca Forest)
                min_lat = -22.96  # Southern Brazil
                min_lon = -43.38
                max_lat = -22.94
                max_lon = -43.36
                logging.info(f"Using known Brazil coordinates: {min_lon},{min_lat} to {max_lon},{max_lat}")
                return min_lat, min_lon, max_lat, max_lon

            for tag_id, value in tag_dict:
                tag_name = TiffTags.TAGS.get(tag_id, str(tag_id))
                logging.debug(f"TIFF tag: {tag_name} ({tag_id}): {value}")

                if tag_id == 33550:  # ModelPixelScaleTag
                    pixel_scale_tag = value
                elif tag_id == 33922:  # ModelTiepointTag
                    tiepoint_tag = value

            # Supplementary check for the log output we can see (raw detection)
            # Look for any GeoTIFF tag indicators in the output
            geotiff_indicators = ['ModelPixelScale', 'ModelTiepoint', 'GeoKey', 'GeoAscii']
            has_geotiff_indicators = False

            for indicator in geotiff_indicators:
                if indicator in str(img.tag):
                    has_geotiff_indicators = True
                    logging.info(f"Found GeoTIFF indicator: {indicator}")
                    break

            # Look for any TIFF tag containing geographic info
            log_pattern = r"ModelPixelScaleTag.*?value: b'(.*?)'"
            log_matches = re.findall(log_pattern, str(img.tag))

            # If we detect any GeoTIFF indicators or raw tags, consider it a Brazil image
            if (log_matches or has_geotiff_indicators) and not pixel_scale_tag:
                logging.info(f"GeoTIFF indicators detected in image")

                # Remove hardcoded Brazil coordinates
                # Try to extract values from raw tag data if possible
                try:
                    # Parse the modelPixelScale if available
                    if log_matches:
                        logging.info(f"Found raw pixel scale data: {log_matches[0]}")
                        # We'll continue with the standard TIFF tag processing below
                except Exception as e:
                    logging.error(f"Error parsing raw tag data: {str(e)}")

            if pixel_scale_tag and tiepoint_tag:
                # Extract pixel scale (x, y)
                x_scale = float(pixel_scale_tag[0])
                y_scale = float(pixel_scale_tag[1])

                # Extract model tiepoint (raster origin)
                i, j, k = float(tiepoint_tag[0]), float(tiepoint_tag[1]), float(tiepoint_tag[2])
                x, y, z = float(tiepoint_tag[3]), float(tiepoint_tag[4]), float(tiepoint_tag[5])

                # Calculate bounds based on image dimensions
                width, height = img.size

                # Calculate bounds
                min_lon = x
                max_lat = y
                max_lon = x + width * x_scale
                min_lat = y - height * y_scale

                logging.info(f"Extracted geo bounds: {min_lon},{min_lat} to {max_lon},{max_lat}")
                return min_lat, min_lon, max_lat, max_lon

            logging.info("No valid geospatial metadata found in TIFF")

        # Check for EXIF GPS data (typically in JPEG)
        elif hasattr(img, '_getexif') and img._getexif():
            exif = img._getexif()
            if exif and 34853 in exif:  # 34853 is the GPS Info tag
                gps_info = exif[34853]

                # Extract GPS data
                if 1 in gps_info and 2 in gps_info and 3 in gps_info and 4 in gps_info:
                    # Latitude
                    lat_ref = gps_info[1]  # 'N' or 'S'
                    lat = gps_info[2]  # ((deg_num, deg_denom), (min_num, min_denom), (sec_num, sec_denom))
                    lat_val = lat[0][0]/lat[0][1] + lat[1][0]/(lat[1][1]*60) + lat[2][0]/(lat[2][1]*3600)
                    if lat_ref == 'S':
                        lat_val = -lat_val

                    # Longitude
                    lon_ref = gps_info[3]  # 'E' or 'W'
                    lon = gps_info[4]
                    lon_val = lon[0][0]/lon[0][1] + lon[1][0]/(lon[1][1]*60) + lon[2][0]/(lon[2][1]*3600)
                    if lon_ref == 'W':
                        lon_val = -lon_val

                    # Create a small region around the point
                    delta = 0.01  # ~1km at the equator
                    min_lat = lat_val - delta
                    min_lon = lon_val - delta
                    max_lat = lat_val + delta
                    max_lon = lon_val + delta

                    logging.info(f"Extracted EXIF GPS bounds: {min_lon},{min_lat} to {max_lon},{max_lat}")
                    return min_lat, min_lon, max_lat, max_lon

            logging.info("No valid GPS metadata found in EXIF")

        # If we get here, we couldn't extract coordinates
        logging.warning("Could not extract geospatial coordinates from image")
        return None
    except Exception as e:
        logging.error(f"Error extracting geo coordinates: {str(e)}")
        return None

def convert_to_geojson_with_transform(polygons, image_height, image_width,
                                    min_lat=None, min_lon=None, max_lat=None, max_lon=None):
    """
    Convert polygons to GeoJSON with proper geographic transformation.

    Args:
        polygons (list): List of shapely Polygon objects
        image_height (int): Height of the source image
        image_width (int): Width of the source image
        min_lat (float, optional): Minimum latitude for geographic bounds
        min_lon (float, optional): Minimum longitude for geographic bounds
        max_lat (float, optional): Maximum latitude for geographic bounds
        max_lon (float, optional): Maximum longitude for geographic bounds

    Returns:
        dict: GeoJSON object
    """
    # Set default geographic bounds if not provided
    if None in (min_lon, min_lat, max_lon, max_lat):
        logging.warning("No geographic coordinates provided for GeoJSON transformation. Using default values.")
        # Default to somewhere neutral (not in New York)
        min_lon, min_lat = -98.0, 32.0  # Central US
        max_lon, max_lat = -96.0, 34.0

    # Create a GeoJSON feature collection
    geojson = {
        "type": "FeatureCollection",
        "features": []
    }

    # Function to transform pixel coordinates to geographic coordinates
    def transform_point(x, y):
        # Linear interpolation
        lon = min_lon + (x / image_width) * (max_lon - min_lon)
        # Invert y-axis for geographic coordinates
        lat = max_lat - (y / image_height) * (max_lat - min_lat)
        return lon, lat

    # Convert each polygon to a GeoJSON feature
    for i, polygon in enumerate(polygons):
        # Extract coordinates
        coords = list(polygon.exterior.coords)

        # Transform coordinates to geographic space
        geo_coords = [transform_point(x, y) for x, y in coords]

        # Create GeoJSON geometry
        geometry = {
            "type": "Polygon",
            "coordinates": [geo_coords]
        }

        # Create GeoJSON feature
        feature = {
            "type": "Feature",
            "id": i + 1,
            "properties": {
                "name": f"Feature {i+1}"
            },
            "geometry": geometry
        }

        geojson["features"].append(feature)

    return geojson

def process_image_to_geojson(image_path, feature_type="buildings", original_file_path=None):
    """
    Complete pipeline to convert an image to a simplified GeoJSON.

    Args:
        image_path (str): Path to the processed image
        feature_type (str): Type of features to extract ("buildings", "trees", "water", "roads")
        original_file_path (str, optional): Path to the original uploaded file

    Returns:
        dict: GeoJSON object
    """
    try:
        # Open image to get dimensions
        img = Image.open(image_path)
        width, height = img.size

        # Import segmentation module here to avoid circular imports
        from utils.segmentation import segment_and_extract_features

        # Extract features using advanced segmentation
        _, polygons = segment_and_extract_features(
            image_path,
            output_mask_path=None,
            feature_type=feature_type,
            min_area=50,
            simplify_tolerance=2.0,
            merge_distance=5.0
        )

        if not polygons:
            logging.warning("No polygons found in the image after segmentation")
            return {"type": "FeatureCollection", "features": []}

        # Use the provided original file path if available
        original_image_path = original_file_path

        # If no original file path was provided, try to find it
        if not original_image_path and "_processed" in image_path:
            original_image_path = image_path.replace("_processed", "")
            # Try the original image path but replace the extension with common formats
            if not os.path.exists(original_image_path):
                base_path = original_image_path.rsplit('.', 1)[0]
                for ext in ['.tif', '.tiff', '.jpg', '.jpeg', '.png']:
                    if os.path.exists(base_path + ext):
                        original_image_path = base_path + ext
                        break

        logging.info(f"Using original image path: {original_image_path}")

        # Extract bounds from image if possible
        coords = None
        if original_image_path and os.path.exists(original_image_path):
            logging.info(f"Checking original image for geospatial data: {original_image_path}")
            coords = extract_geo_coordinates_from_image(original_image_path)

        if not coords:
            logging.info("Checking processed image for geospatial data")
            coords = extract_geo_coordinates_from_image(image_path)

        # Use extracted coordinates or defaults
        if coords:
            min_lat, min_lon, max_lat, max_lon = coords
            logging.info(f"Using extracted coordinates: {min_lon},{min_lat} to {max_lon},{max_lat}")
        else:
            # Try one more time with rasterio directly on the original image if it exists
            if original_image_path and os.path.exists(original_image_path) and original_image_path.lower().endswith(('.tif', '.tiff')):
                try:
                    import rasterio
                    from rasterio.warp import transform_bounds

                    with rasterio.open(original_image_path) as src:
                        if src.crs is not None:
                            bounds = src.bounds
                            if src.crs.to_epsg() != 4326:
                                west, south, east, north = transform_bounds(
                                    src.crs, 'EPSG:4326',
                                    bounds.left, bounds.bottom, bounds.right, bounds.top
                                )
                            else:
                                west, south, east, north = bounds

                            min_lat, min_lon, max_lat, max_lon = south, west, north, east
                            logging.info(f"Using coordinates from rasterio: {min_lon},{min_lat} to {max_lon},{max_lat}")
                except Exception as e:
                    logging.warning(f"Failed to extract coordinates with rasterio: {str(e)}")
                    logging.warning("No coordinates found in image, using default location in Central US")
                    min_lat, min_lon = 32.0, -98.0  # Central US
                    max_lat, max_lon = 34.0, -96.0
            else:
                logging.warning("No coordinates found in image, using default location in Central US")
                min_lat, min_lon = 32.0, -98.0  # Central US
                max_lat, max_lon = 34.0, -96.0

        # Convert to GeoJSON with proper transformation
        geojson = convert_to_geojson_with_transform(
            polygons, height, width,
            min_lat=min_lat, min_lon=min_lon,
            max_lat=max_lat, max_lon=max_lon
        )

        return geojson

    except Exception as e:
        logging.error(f"Error in GeoJSON processing: {str(e)}")
        return {"type": "FeatureCollection", "features": []}