Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
from nltk import word_tokenize
|
5 |
+
from nltk.stem import WordNetLemmatizer
|
6 |
+
from nltk.corpus import stopwords
|
7 |
+
import nltk
|
8 |
+
import json
|
9 |
+
|
10 |
+
# Download NLTK resources
|
11 |
+
nltk.download('punkt')
|
12 |
+
nltk.download('wordnet')
|
13 |
+
nltk.download('stopwords')
|
14 |
+
|
15 |
+
def preprocess(sentence):
|
16 |
+
lemmatizer = WordNetLemmatizer()
|
17 |
+
stop_words = set(stopwords.words('english'))
|
18 |
+
tokens = word_tokenize(sentence.lower())
|
19 |
+
tokens = [lemmatizer.lemmatize(word) for word in tokens if word.isalnum()]
|
20 |
+
tokens = [word for word in tokens if word not in stop_words]
|
21 |
+
return ' '.join(tokens)
|
22 |
+
|
23 |
+
def find_most_similar(sentence, candidates, threshold=0.15):
|
24 |
+
input_bits = preprocess(sentence)
|
25 |
+
chunks = [preprocess(candidate) for candidate in candidates]
|
26 |
+
|
27 |
+
vectorizer = TfidfVectorizer()
|
28 |
+
vectors = vectorizer.fit_transform([input_bits] + chunks)
|
29 |
+
|
30 |
+
similarity_scores = cosine_similarity(vectors[0:1], vectors[1:]).flatten()
|
31 |
+
|
32 |
+
similar_sentences = []
|
33 |
+
for i, score in enumerate(similarity_scores):
|
34 |
+
if score >= threshold:
|
35 |
+
similar_sentences.append({"sentence": candidates[i], "similarity_score": round(score, 4)})
|
36 |
+
|
37 |
+
return similar_sentences
|
38 |
+
|
39 |
+
def read_sentences_from_file(file_location):
|
40 |
+
with open(file_location, 'r') as file:
|
41 |
+
text = file.read().replace('\n', ' ')
|
42 |
+
sentences = [sentence.strip() for sentence in text.split('.') if sentence.strip()]
|
43 |
+
return sentences
|
44 |
+
|
45 |
+
def fetch_vectors(file, sentence):
|
46 |
+
file_location = file.name
|
47 |
+
chunks = read_sentences_from_file(file_location)
|
48 |
+
similar_sentences = find_most_similar(sentence, chunks, threshold=0.15)
|
49 |
+
return json.dumps(similar_sentences, indent=4)
|
50 |
+
|
51 |
+
# Interface
|
52 |
+
file_uploader = gr.File(label="Upload a .txt file")
|
53 |
+
text_input = gr.Textbox(label="Enter a sentence")
|
54 |
+
output_text = gr.Textbox(label="Similar Sentences JSON")
|
55 |
+
|
56 |
+
iface = gr.Interface(
|
57 |
+
fn=fetch_vectors,
|
58 |
+
inputs=[file_uploader, text_input],
|
59 |
+
outputs=output_text,
|
60 |
+
title="Simple RAG - For QA",
|
61 |
+
description="Upload a text file and enter the question. The threshold is set to 0.15."
|
62 |
+
)
|
63 |
+
|
64 |
+
iface.launch(debug=True)
|