VibeVoice-Colab / scripts /convert_nnscaler_checkpoint_to_transformers.py
NeuralFalcon's picture
Upload 2 files
dec16d6 verified
raw
history blame
6.4 kB
#!/usr/bin/env python
# coding=utf-8
import argparse
import json
import os
from pathlib import Path
import re
import torch
from typing import Dict, List, Tuple
from vibevoice.modular.configuration_vibevoice import (
VibeVoiceConfig
)
from vibevoice.modular.modeling_vibevoice import VibeVoiceForConditionalGeneration
from transformers.utils import logging
logger = logging.get_logger(__name__)
def convert_vibevoice_nnscaler_checkpoint_to_hf(
checkpoint_path: str,
pytorch_dump_folder_path: str,
config_path: str = None,
):
"""
Convert a nnscaler VibeVoice checkpoint to HuggingFace format.
Supports both regular checkpoints and tensor parallel checkpoints.
"""
# Load regular checkpoint
logger.info(f"Loading regular checkpoint from {checkpoint_path}")
checkpoint = torch.load(checkpoint_path, map_location="cpu") # ['model', 'optimizer', 'lr_scheduler', 'train_status', 'train_args', 'rng_states', 'nnscaler', 'dataloader']
# config = checkpoint['train_args']
init_config_name = checkpoint['train_args']['vars']['model_args']['config_path']['relative_path']
pretrained_name = checkpoint['train_args']['vars']['data_args']['tokenizer_path']
init_config_path = Path(__file__).parent.parent / 'configs' / init_config_name.split('/')[-1]
if init_config_path.exists():
logger.info(f"Loading initial config from {init_config_path}")
with open(init_config_path, 'r') as f:
init_config = json.load(f)
else:
raise FileNotFoundError(f"Initial config file {init_config_path} not found. Please provide a valid path.")
tie_word_embeddings = init_config['decoder_config'].get('tie_word_embeddings', True)
logger.info(f"Tie word embeddings: {tie_word_embeddings}")
init_config['decoder_config']['use_cache'] = True
config = VibeVoiceConfig(**init_config, tie_word_embeddings=tie_word_embeddings)
# # Extract the model state dict
model_state_dict = {k.replace('model.model.', 'model.'): v for k, v in checkpoint["model"].items() if k.startswith('model.model.')}
if not tie_word_embeddings and 'model.lm_head.weight' in checkpoint["model"].keys():
# If not tying weights, we need to add the lm_head weight separately
model_state_dict['lm_head.weight'] = checkpoint["model"]['model.lm_head.weight']
# Override with provided config if available
if config_path:
logger.info(f"Loading config from {config_path}")
with open(config_path, 'r') as f:
config_dict = json.load(f)
config = VibeVoiceConfig.from_dict(config_dict)
# Set the default dtype to bfloat16 before creating the model
original_dtype = torch.get_default_dtype()
torch.set_default_dtype(torch.bfloat16)
# Create the HuggingFace model
logger.info("Creating HuggingFace VibeVoiceForConditionalGeneration model")
model = VibeVoiceForConditionalGeneration(config)
# Restore original dtype
torch.set_default_dtype(original_dtype)
# Load the state dict
logger.info("Loading weights into model")
missing_keys, unexpected_keys = model.load_state_dict(model_state_dict, strict=False)
if missing_keys:
logger.warning(f"Missing keys: {missing_keys}")
if unexpected_keys:
logger.warning(f"Unexpected keys: {unexpected_keys}")
# Create output directory
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
# Save the model and config
logger.info(f"Saving model to {pytorch_dump_folder_path}")
# Save config
config.save_pretrained(pytorch_dump_folder_path)
# Save VibeVoiceProcessor configuration
logger.info("Saving VibeVoiceProcessor configuration")
processor_config = {
"processor_class": "VibeVoiceProcessor",
"speech_tok_compress_ratio": 3200,
"db_normalize": True,
# Audio processor configuration
"audio_processor": {
"feature_extractor_type": "VibeVoiceTokenizerProcessor",
"sampling_rate": 24000,
"normalize_audio": True,
"target_dB_FS": -25,
"eps": 1e-6,
},
"language_model_pretrained_name": pretrained_name,
}
processor_config_path = os.path.join(pytorch_dump_folder_path, "preprocessor_config.json")
with open(processor_config_path, 'w') as f:
json.dump(processor_config, f, indent=2)
logger.info(f"Saved processor config to {processor_config_path}")
# Save model with sharding
# save_pretrained handles tied weights automatically
logger.info("Saving model weights with sharding...")
model.save_pretrained(
pytorch_dump_folder_path,
max_shard_size="2GB", # Set maximum size for each shard
safe_serialization=True # Ensure saving in .safetensors format
)
logger.info(f"Model weights saved to {pytorch_dump_folder_path}")
logger.info("Conversion complete!")
# Verify the saved model can be loaded
logger.info("Verifying saved model...")
loaded_model = VibeVoiceForConditionalGeneration.from_pretrained(pytorch_dump_folder_path)
logger.info("Model successfully loaded from saved checkpoint!")
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--nnscaler_checkpoint_path",
type=str,
required=True,
help="Path to the fairseq checkpoint (.pt file). For tensor parallel checkpoints, "
"provide any one of the part files (e.g., checkpoint_1_5000-model_part-0.pt), "
"and the script will automatically detect and merge all parts.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
type=str,
required=True,
help="Path to the output PyTorch model directory",
)
parser.add_argument(
"--config_path",
type=str,
default=None,
help="Optional path to a config JSON file to override extracted config",
)
args = parser.parse_args()
convert_vibevoice_nnscaler_checkpoint_to_hf(
args.nnscaler_checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
)
if __name__ == "__main__":
main()