File size: 10,131 Bytes
0ec3100 eb0c5da 0ec3100 eb0c5da 0ec3100 eb0c5da 0ec3100 eb0c5da 0ec3100 eb0c5da 0ec3100 eb0c5da 0ec3100 eb0c5da 0ec3100 eb0c5da 0ec3100 eb0c5da 0ec3100 eb0c5da 0ec3100 eb0c5da 8defda3 0ec3100 eb0c5da 40f25e8 0ec3100 eb0c5da 0ec3100 eb0c5da 0ec3100 eb0c5da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import cv2
import time
from matplotlib import text
import mediapipe as mp
from mediapipe.tasks.python import vision
import numpy as np
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
from utils import mask_overlay
def draw_landmarks_on_image(rgb_image, detection_result):
face_landmarks_list = detection_result.face_landmarks
annotated_image = np.copy(rgb_image)
for idx in range(len(face_landmarks_list)):
face_landmarks = face_landmarks_list[idx]
face_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
face_landmarks_proto.landmark.extend(
[landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in face_landmarks]
)
solutions.drawing_utils.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks_proto,
connections=mp.solutions.face_mesh.FACEMESH_TESSELATION,
landmark_drawing_spec=None,
connection_drawing_spec=mp.solutions.drawing_styles.get_default_face_mesh_tesselation_style()
)
solutions.drawing_utils.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks_proto,
connections=mp.solutions.face_mesh.FACEMESH_CONTOURS,
landmark_drawing_spec=None,
connection_drawing_spec=mp.solutions.drawing_styles.get_default_face_mesh_contours_style()
)
solutions.drawing_utils.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks_proto,
connections=mp.solutions.face_mesh.FACEMESH_IRISES,
landmark_drawing_spec=None,
connection_drawing_spec=mp.solutions.drawing_styles.get_default_face_mesh_iris_connections_style()
)
return annotated_image
def mediapipe_config():
model_path = "face_landmarker.task"
BaseOptions = mp.tasks.BaseOptions
FaceLandmarker = mp.tasks.vision.FaceLandmarker
FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
VisionRunningMode = mp.tasks.vision.RunningMode
options = FaceLandmarkerOptions(
base_options=BaseOptions(model_asset_path=model_path),
running_mode=VisionRunningMode.VIDEO,
)
landmarker = FaceLandmarker.create_from_options(options)
return landmarker
landmarker = None
def reset_landmarker():
global landmarker
try:
if landmarker:
landmarker.close()
except:
pass
landmarker = mediapipe_config()
def face_point(results, frame):
ih, iw, ic = frame.shape
faces = []
if results.face_landmarks:
for face_landmarks in results.face_landmarks:
face = []
for id, lm in enumerate(face_landmarks):
x, y = int(lm.x * iw), int(lm.y * ih)
face.append([id, x, y])
faces.append(face)
return faces
def letterbox(image, target_width, target_height):
"""Resize image keeping aspect ratio, pad with black to fit target size."""
ih, iw = image.shape[:2]
scale = min(target_width / iw, target_height / ih)
nw, nh = int(iw * scale), int(ih * scale)
resized = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA)
canvas = np.zeros((target_height, target_width, 3), dtype=np.uint8)
x_offset = (target_width - nw) // 2
y_offset = (target_height - nh) // 2
canvas[y_offset:y_offset+nh, x_offset:x_offset+nw] = resized
return canvas
import subprocess
import os
import shutil
import os, shutil, subprocess
import uuid
def replace_audio_with_ffmpeg(video_path, audio_path):
base_name = os.path.splitext(os.path.basename(video_path))[0]
os.makedirs("./save_video/", exist_ok=True)
output_path = f"./save_video/{base_name}_.mp4"
gpu = False
if gpu:
print("CUDA GPU is available. Running on GPU.")
else:
print("No CUDA GPU found. Falling back to CPU.")
video_codec = "h264_nvenc" if gpu else "libx264"
cmd = [
"ffmpeg",
"-y",
"-i", video_path,
"-i", audio_path,
"-c:v", video_codec,
"-c:a", "aac",
"-map", "0:v:0",
"-map", "1:a:0",
"-shortest",
output_path
]
subprocess.run(cmd, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
return os.path.abspath(output_path)
def add_audio(input_video, mask_video, save_video="final.mp4"):
"""
Extract audio as WAV from input_video and add it to mask_video.
If extraction fails, just copy mask_video to save_video.
"""
try:
os.makedirs("./temp", exist_ok=True)
audio_file = os.path.abspath("./temp/temp_audio.wav")
input_video = os.path.normpath(os.path.abspath(input_video))
mask_video = os.path.normpath(os.path.abspath(mask_video))
save_video = os.path.normpath(os.path.abspath(save_video))
extract_cmd = [
"ffmpeg", "-y", "-i", input_video, "-vn",
"-acodec", "pcm_s16le", "-ar", "44100", "-ac", "2",
audio_file, "-hide_banner", "-loglevel", "error"
]
subprocess.run(extract_cmd, check=True,stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL)
if not os.path.exists(audio_file) or os.path.getsize(audio_file) == 0:
raise Exception("No audio track extracted")
gpu=False
video_codec = "h264_nvenc" if gpu else "libx264"
merge_cmd = [
"ffmpeg",
"-y",
"-i", mask_video,
"-i", audio_file,
"-c:v", video_codec,
"-c:a", "aac",
"-map", "0:v:0",
"-map", "1:a:0",
"-shortest",
save_video
]
subprocess.run(merge_cmd, check=True,stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL)
os.remove(audio_file)
return True
except Exception as e:
print("Audio merge failed:", e)
try:
shutil.copy(mask_video, save_video)
except Exception as e2:
print("Fallback copy failed:", e2)
return False
return False
def is_camera_source(source):
if isinstance(source, int):
return True
if isinstance(source, str) and not os.path.isfile(source):
try:
idx = int(source)
return True
except ValueError:
return False
return False
def add_mask(upload_video,
mask_name="Blue Mask",mask_up=10, mask_down=10,display=False):
reset_landmarker()
output_video="./temp/mask.mp4"
os.makedirs("./temp", exist_ok=True)
cap = cv2.VideoCapture(upload_video)
if not cap.isOpened():
print("Cannot access video file")
exit()
input_fps = int(cap.get(cv2.CAP_PROP_FPS))
if input_fps <= 0 or input_fps > 120:
input_fps = 25
OUTPUT_WIDTH = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
OUTPUT_HEIGHT = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(output_video, fourcc, input_fps, (OUTPUT_WIDTH, OUTPUT_HEIGHT))
frame_count = 0
fps = 0
fps_start_time = time.time()
while True:
ret, frame = cap.read()
if not ret:
print("✅ Video processing complete.")
break
# Flip frame
# frame = cv2.flip(frame, 1)
raw_frame=frame.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame_rgb)
timestamp_ms = int(cap.get(cv2.CAP_PROP_POS_MSEC))
results = landmarker.detect_for_video(mp_image, timestamp_ms)
# Create the mesh visualization
visualized_image = draw_landmarks_on_image(frame_rgb, results)
visualized_image = cv2.cvtColor(visualized_image, cv2.COLOR_RGB2BGR)
# Create the mask overlay image
faces = face_point(results, frame)
if len(faces) > 0:
masked_frame = mask_overlay(frame, faces, mask_up, mask_down, mask_name)
else:
masked_frame = frame
out.write(masked_frame)
if display:
frame_count += 1
if time.time() - fps_start_time >= 1.0:
fps = frame_count / (time.time() - fps_start_time)
frame_count = 0
fps_start_time = time.time()
fps_text = f"FPS: {fps:.2f}"
SCREEN_W, SCREEN_H = 480, 270
cv2.putText(raw_frame, fps_text, (30, 60), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2)
# cv2.putText(middle, fps_text, (30, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# cv2.putText(right, fps_text, (30, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
left=letterbox(raw_frame, SCREEN_W, SCREEN_H)
middle = letterbox(visualized_image, SCREEN_W, SCREEN_H)
right = letterbox(masked_frame, SCREEN_W, SCREEN_H)
combined_image = np.hstack((left,middle, right))
cv2.imshow("Background Preview", combined_image)
cv2.imshow("OBS", masked_frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
print("Releasing resources...")
cap.release()
out.release()
cv2.destroyAllWindows()
random_str = str(uuid.uuid4())[:5]
if is_camera_source(upload_video):
print("Using Camera Index:", upload_video)
return None, None
save_video_path="./temp/"+os.path.basename(upload_video).split('.')[0] + "_" +mask_name.replace(" ","_") + "_" + random_str+".mp4"
sucess=add_audio(upload_video,output_video, save_video_path)
if sucess:
print(f"Masked video saved to {save_video_path}")
return save_video_path,save_video_path
else:
print("Failed to save masked video.")
return output_video,output_video
# mask_names=["Front Man Mask", "Guards Mask", "Red Mask", "Blue Mask"]
# add_mask(0,mask_name=mask_names[0],mask_up=10, mask_down=10,display=True)
|