Spaces:
Build error
Build error
| import gradio as gr | |
| import torch | |
| import numpy as np | |
| from model import Transformer | |
| from transformers import AutoTokenizer # pip install transformers | |
| from utils import ( | |
| DEVICE, | |
| DROPOUT, | |
| NUM_EMBED, | |
| NUM_HEAD, | |
| NUM_LAYER, | |
| BLOCK_SIZE, | |
| encode, | |
| decode | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained("Neu256/PromeTokenizer") | |
| vocab_size = tokenizer.vocab_size | |
| # train a new model | |
| model = Transformer( | |
| vocab_size=vocab_size, | |
| num_embed=NUM_EMBED, | |
| block_size=BLOCK_SIZE, | |
| num_heads=NUM_HEAD, | |
| num_layers=NUM_LAYER, | |
| dropout=DROPOUT | |
| ) | |
| # load model to GPU if available | |
| m = model.to(DEVICE) | |
| # print the number of parameters in the model | |
| m.load_state_dict(torch.load("base_model.pth", map_location=torch.device(DEVICE))) | |
| m.eval() | |
| #print( | |
| # "Model with {:.2f}M parameters".format(sum(p.numel() for p in m.parameters()) / 1e6) | |
| #) | |
| def model_generate(text, number_of_new_token, temperature, top_p): | |
| context = encode(str(text), tokenizer).unsqueeze(0).to(DEVICE) | |
| return decode(enc_sec=m.generate(idx=context, max_new_tokens=number_of_new_token, temperature = temperature, top_p = top_p)[0], tokenizer=tokenizer) | |
| iface = gr.Interface(fn=model_generate, inputs=["text", gr.Slider(10, 1000), gr.Slider(0, 1, value=0.7, step = 0.05), gr.Slider(0, 1, value=0.95, step = 0.05)], outputs="text") | |
| iface.launch() |