Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,15 +6,23 @@ import torch
|
|
| 6 |
from torchvision import transforms
|
| 7 |
import os
|
| 8 |
import zipfile
|
| 9 |
-
import numpy as np
|
| 10 |
from PIL import Image
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
transform_image = transforms.Compose(
|
| 19 |
[
|
| 20 |
transforms.Resize((1024, 1024)),
|
|
@@ -23,30 +31,14 @@ transform_image = transforms.Compose(
|
|
| 23 |
]
|
| 24 |
)
|
| 25 |
|
| 26 |
-
def
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
image_size = im.size
|
| 30 |
-
origin = im.copy()
|
| 31 |
-
input_images = transform_image(im).unsqueeze(0).to("cpu")
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
pred_pil = transforms.ToPILImage()(pred)
|
| 37 |
-
mask = pred_pil.resize(image_size)
|
| 38 |
-
|
| 39 |
-
im.putalpha(mask)
|
| 40 |
-
output_file_path = os.path.join("output_images", "output_image_single.png")
|
| 41 |
-
im.save(output_file_path)
|
| 42 |
-
|
| 43 |
-
output_path = os.path.join("output_images", "output_image_processed.png")
|
| 44 |
-
im.save(output_path, "PNG")
|
| 45 |
-
|
| 46 |
-
return [im, mask], output_path
|
| 47 |
|
| 48 |
-
def fn_url(url):
|
| 49 |
-
im = load_img(url, output_type="pil")
|
| 50 |
im = im.convert("RGB")
|
| 51 |
image_size = im.size
|
| 52 |
origin = im.copy()
|
|
@@ -58,19 +50,58 @@ def fn_url(url):
|
|
| 58 |
pred_pil = transforms.ToPILImage()(pred)
|
| 59 |
mask = pred_pil.resize(image_size)
|
| 60 |
|
| 61 |
-
im.
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
output_paths = []
|
|
|
|
|
|
|
|
|
|
| 72 |
for idx, image_path in enumerate(images):
|
| 73 |
im = load_img(image_path, output_type="pil")
|
|
|
|
|
|
|
|
|
|
| 74 |
im = im.convert("RGB")
|
| 75 |
image_size = im.size
|
| 76 |
input_images = transform_image(im).unsqueeze(0).to("cpu")
|
|
@@ -81,44 +112,52 @@ def batch_fn(images):
|
|
| 81 |
pred_pil = transforms.ToPILImage()(pred)
|
| 82 |
mask = pred_pil.resize(image_size)
|
| 83 |
|
| 84 |
-
im.putalpha(mask)
|
| 85 |
-
|
| 86 |
-
output_file_path = os.path.join("output_images", f"output_image_batch_{idx + 1}.png")
|
| 87 |
im.save(output_file_path)
|
| 88 |
output_paths.append(output_file_path)
|
| 89 |
|
| 90 |
-
zip_file_path = os.path.join(
|
| 91 |
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
|
| 92 |
for file in output_paths:
|
| 93 |
zipf.write(file, os.path.basename(file))
|
| 94 |
|
| 95 |
-
return zip_file_path
|
| 96 |
|
|
|
|
|
|
|
| 97 |
batch_image = gr.File(label="Upload multiple images", type="filepath", file_count="multiple")
|
| 98 |
|
| 99 |
slider1 = ImageSlider(label="Processed Image", type="pil")
|
| 100 |
slider2 = ImageSlider(label="Processed Image from URL", type="pil")
|
| 101 |
-
image = gr.Image(label="Upload an image")
|
| 102 |
-
text = gr.Textbox(label="Paste an image URL")
|
| 103 |
-
|
| 104 |
-
chameleon = load_img("chameleon.jpg", output_type="pil")
|
| 105 |
-
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
|
| 106 |
|
| 107 |
tab1 = gr.Interface(
|
| 108 |
-
fn
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
)
|
| 110 |
|
| 111 |
-
tab2 = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
tab3 = gr.Interface(
|
| 114 |
-
|
| 115 |
inputs=batch_image,
|
| 116 |
-
outputs=gr.File(label="Download Processed Files"),
|
| 117 |
api_name="batch"
|
| 118 |
)
|
| 119 |
|
| 120 |
demo = gr.TabbedInterface(
|
| 121 |
-
[tab1, tab2, tab3],
|
|
|
|
|
|
|
| 122 |
)
|
| 123 |
|
| 124 |
if __name__ == "__main__":
|
|
|
|
| 6 |
from torchvision import transforms
|
| 7 |
import os
|
| 8 |
import zipfile
|
|
|
|
| 9 |
from PIL import Image
|
| 10 |
|
| 11 |
+
output_folder = 'output_images'
|
| 12 |
+
if not os.path.exists(output_folder):
|
| 13 |
+
os.makedirs(output_folder)
|
| 14 |
+
|
| 15 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
| 16 |
|
| 17 |
+
try:
|
| 18 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 19 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 20 |
+
)
|
| 21 |
+
birefnet.to("cpu")
|
| 22 |
+
except Exception as e:
|
| 23 |
+
print(f"Error loading model: {e}")
|
| 24 |
+
raise
|
| 25 |
+
|
| 26 |
transform_image = transforms.Compose(
|
| 27 |
[
|
| 28 |
transforms.Resize((1024, 1024)),
|
|
|
|
| 31 |
]
|
| 32 |
)
|
| 33 |
|
| 34 |
+
def process_single_image(image, output_type="mask"):
|
| 35 |
+
if image is None:
|
| 36 |
+
return [None, None], None
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
im = load_img(image, output_type="pil")
|
| 39 |
+
if im is None:
|
| 40 |
+
return [None, None], None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
| 42 |
im = im.convert("RGB")
|
| 43 |
image_size = im.size
|
| 44 |
origin = im.copy()
|
|
|
|
| 50 |
pred_pil = transforms.ToPILImage()(pred)
|
| 51 |
mask = pred_pil.resize(image_size)
|
| 52 |
|
| 53 |
+
processed_im = im.copy()
|
| 54 |
+
processed_im.putalpha(mask)
|
| 55 |
+
output_file_path = os.path.join(output_folder, "output_image_i2i.png")
|
| 56 |
+
processed_im.save(output_file_path)
|
| 57 |
+
|
| 58 |
+
if output_type == "origin":
|
| 59 |
+
return [processed_im, origin], output_file_path
|
| 60 |
+
else:
|
| 61 |
+
return [processed_im, mask], output_file_path
|
| 62 |
+
|
| 63 |
+
def process_image_from_url(url, output_type="mask"):
|
| 64 |
+
if url is None or url.strip() == "":
|
| 65 |
+
return [None, None], None
|
| 66 |
|
| 67 |
+
try:
|
| 68 |
+
im = load_img(url, output_type="pil")
|
| 69 |
+
if im is None:
|
| 70 |
+
return [None, None], None
|
| 71 |
|
| 72 |
+
im = im.convert("RGB")
|
| 73 |
+
image_size = im.size
|
| 74 |
+
origin = im.copy()
|
| 75 |
+
input_images = transform_image(im).unsqueeze(0).to("cpu")
|
| 76 |
+
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
| 79 |
+
pred = preds[0].squeeze()
|
| 80 |
+
pred_pil = transforms.ToPILImage()(pred)
|
| 81 |
+
mask = pred_pil.resize(image_size)
|
| 82 |
+
|
| 83 |
+
processed_im = im.copy()
|
| 84 |
+
processed_im.putalpha(mask)
|
| 85 |
+
output_file_path = os.path.join(output_folder, "output_image_url.png")
|
| 86 |
+
processed_im.save(output_file_path)
|
| 87 |
+
|
| 88 |
+
if output_type == "origin":
|
| 89 |
+
return [processed_im, origin], output_file_path
|
| 90 |
+
else:
|
| 91 |
+
return [processed_im, mask], output_file_path
|
| 92 |
+
except Exception as e:
|
| 93 |
+
return [None, None], str(e)
|
| 94 |
+
|
| 95 |
+
def process_batch_images(images):
|
| 96 |
output_paths = []
|
| 97 |
+
if not images:
|
| 98 |
+
return [], None
|
| 99 |
+
|
| 100 |
for idx, image_path in enumerate(images):
|
| 101 |
im = load_img(image_path, output_type="pil")
|
| 102 |
+
if im is None:
|
| 103 |
+
continue
|
| 104 |
+
|
| 105 |
im = im.convert("RGB")
|
| 106 |
image_size = im.size
|
| 107 |
input_images = transform_image(im).unsqueeze(0).to("cpu")
|
|
|
|
| 112 |
pred_pil = transforms.ToPILImage()(pred)
|
| 113 |
mask = pred_pil.resize(image_size)
|
| 114 |
|
| 115 |
+
im.putalpha(mask)
|
| 116 |
+
output_file_path = os.path.join(output_folder, f"output_image_batch_{idx + 1}.png")
|
|
|
|
| 117 |
im.save(output_file_path)
|
| 118 |
output_paths.append(output_file_path)
|
| 119 |
|
| 120 |
+
zip_file_path = os.path.join(output_folder, "processed_images.zip")
|
| 121 |
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
|
| 122 |
for file in output_paths:
|
| 123 |
zipf.write(file, os.path.basename(file))
|
| 124 |
|
| 125 |
+
return output_paths, zip_file_path
|
| 126 |
|
| 127 |
+
image = gr.Image(label="Upload an image")
|
| 128 |
+
text = gr.Textbox(label="Paste an image URL")
|
| 129 |
batch_image = gr.File(label="Upload multiple images", type="filepath", file_count="multiple")
|
| 130 |
|
| 131 |
slider1 = ImageSlider(label="Processed Image", type="pil")
|
| 132 |
slider2 = ImageSlider(label="Processed Image from URL", type="pil")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
tab1 = gr.Interface(
|
| 135 |
+
fn=process_single_image,
|
| 136 |
+
inputs=[image, gr.Radio(choices=["mask", "origin"], value="mask", label="Select Output Type")],
|
| 137 |
+
outputs=[slider1, gr.File(label="PNG Output")],
|
| 138 |
+
examples=[["chameleon.jpg"]],
|
| 139 |
+
api_name="image"
|
| 140 |
)
|
| 141 |
|
| 142 |
+
tab2 = gr.Interface(
|
| 143 |
+
fn=process_image_from_url,
|
| 144 |
+
inputs=[text, gr.Radio(choices=["mask", "origin"], value="mask", label="Select Output Type")],
|
| 145 |
+
outputs=[slider2, gr.File(label="PNG Output")],
|
| 146 |
+
examples=[["https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"]],
|
| 147 |
+
api_name="text"
|
| 148 |
+
)
|
| 149 |
|
| 150 |
tab3 = gr.Interface(
|
| 151 |
+
fn=process_batch_images,
|
| 152 |
inputs=batch_image,
|
| 153 |
+
outputs=[gr.Gallery(label="Processed Images"), gr.File(label="Download Processed Files")],
|
| 154 |
api_name="batch"
|
| 155 |
)
|
| 156 |
|
| 157 |
demo = gr.TabbedInterface(
|
| 158 |
+
[tab1, tab2, tab3],
|
| 159 |
+
["image", "text", "batch"],
|
| 160 |
+
title="Multi Birefnet for Background Removal"
|
| 161 |
)
|
| 162 |
|
| 163 |
if __name__ == "__main__":
|