Spaces:
Runtime error
Runtime error
last question WIP
Browse files- midterm/Pipfile +17 -0
- midterm/Pipfile.lock +1374 -0
- midterm/README.md +0 -0
- midterm/data/01_raw/CBC_data.csv +0 -0
- midterm/midterm/__init__.py +0 -0
- midterm/midterm/take_at_home_(1).ipynb +1258 -0
- midterm/pyproject.toml +22 -0
- midterm/tests/__init__.py +0 -0
midterm/Pipfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[[source]]
|
2 |
+
url = "https://pypi.org/simple"
|
3 |
+
verify_ssl = true
|
4 |
+
name = "pypi"
|
5 |
+
|
6 |
+
[packages]
|
7 |
+
black = "*"
|
8 |
+
jupyterlab = "*"
|
9 |
+
pandas = "*"
|
10 |
+
scikit-learn = "*"
|
11 |
+
numpy = "*"
|
12 |
+
ipython = "*"
|
13 |
+
|
14 |
+
[dev-packages]
|
15 |
+
|
16 |
+
[requires]
|
17 |
+
python_version = "3.10"
|
midterm/Pipfile.lock
ADDED
@@ -0,0 +1,1374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_meta": {
|
3 |
+
"hash": {
|
4 |
+
"sha256": "eadb9aca9c2e9dcfe3044c4a636221469690ffde3a8dab04ade665197db578a0"
|
5 |
+
},
|
6 |
+
"pipfile-spec": 6,
|
7 |
+
"requires": {
|
8 |
+
"python_version": "3.10"
|
9 |
+
},
|
10 |
+
"sources": [
|
11 |
+
{
|
12 |
+
"name": "pypi",
|
13 |
+
"url": "https://pypi.org/simple",
|
14 |
+
"verify_ssl": true
|
15 |
+
}
|
16 |
+
]
|
17 |
+
},
|
18 |
+
"default": {
|
19 |
+
"aiofiles": {
|
20 |
+
"hashes": [
|
21 |
+
"sha256:1142fa8e80dbae46bb6339573ad4c8c0841358f79c6eb50a493dceca14621bad",
|
22 |
+
"sha256:9107f1ca0b2a5553987a94a3c9959fe5b491fdf731389aa5b7b1bd0733e32de6"
|
23 |
+
],
|
24 |
+
"markers": "python_version >= '3.7' and python_version < '4.0'",
|
25 |
+
"version": "==22.1.0"
|
26 |
+
},
|
27 |
+
"aiosqlite": {
|
28 |
+
"hashes": [
|
29 |
+
"sha256:c3511b841e3a2c5614900ba1d179f366826857586f78abd75e7cbeb88e75a557",
|
30 |
+
"sha256:faa843ef5fb08bafe9a9b3859012d3d9d6f77ce3637899de20606b7fc39aa213"
|
31 |
+
],
|
32 |
+
"markers": "python_version >= '3.7'",
|
33 |
+
"version": "==0.18.0"
|
34 |
+
},
|
35 |
+
"anyio": {
|
36 |
+
"hashes": [
|
37 |
+
"sha256:25ea0d673ae30af41a0c442f81cf3b38c7e79fdc7b60335a4c14e05eb0947421",
|
38 |
+
"sha256:fbbe32bd270d2a2ef3ed1c5d45041250284e31fc0a4df4a5a6071842051a51e3"
|
39 |
+
],
|
40 |
+
"markers": "python_full_version >= '3.6.2'",
|
41 |
+
"version": "==3.6.2"
|
42 |
+
},
|
43 |
+
"argon2-cffi": {
|
44 |
+
"hashes": [
|
45 |
+
"sha256:8c976986f2c5c0e5000919e6de187906cfd81fb1c72bf9d88c01177e77da7f80",
|
46 |
+
"sha256:d384164d944190a7dd7ef22c6aa3ff197da12962bd04b17f64d4e93d934dba5b"
|
47 |
+
],
|
48 |
+
"markers": "python_version >= '3.6'",
|
49 |
+
"version": "==21.3.0"
|
50 |
+
},
|
51 |
+
"argon2-cffi-bindings": {
|
52 |
+
"hashes": [
|
53 |
+
"sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670",
|
54 |
+
"sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f",
|
55 |
+
"sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583",
|
56 |
+
"sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194",
|
57 |
+
"sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c",
|
58 |
+
"sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a",
|
59 |
+
"sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082",
|
60 |
+
"sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5",
|
61 |
+
"sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f",
|
62 |
+
"sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7",
|
63 |
+
"sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d",
|
64 |
+
"sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f",
|
65 |
+
"sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae",
|
66 |
+
"sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3",
|
67 |
+
"sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86",
|
68 |
+
"sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367",
|
69 |
+
"sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d",
|
70 |
+
"sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93",
|
71 |
+
"sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb",
|
72 |
+
"sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e",
|
73 |
+
"sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"
|
74 |
+
],
|
75 |
+
"markers": "python_version >= '3.6'",
|
76 |
+
"version": "==21.2.0"
|
77 |
+
},
|
78 |
+
"arrow": {
|
79 |
+
"hashes": [
|
80 |
+
"sha256:3934b30ca1b9f292376d9db15b19446088d12ec58629bc3f0da28fd55fb633a1",
|
81 |
+
"sha256:5a49ab92e3b7b71d96cd6bfcc4df14efefc9dfa96ea19045815914a6ab6b1fe2"
|
82 |
+
],
|
83 |
+
"markers": "python_version >= '3.6'",
|
84 |
+
"version": "==1.2.3"
|
85 |
+
},
|
86 |
+
"asttokens": {
|
87 |
+
"hashes": [
|
88 |
+
"sha256:4622110b2a6f30b77e1473affaa97e711bc2f07d3f10848420ff1898edbe94f3",
|
89 |
+
"sha256:6b0ac9e93fb0335014d382b8fa9b3afa7df546984258005da0b9e7095b3deb1c"
|
90 |
+
],
|
91 |
+
"version": "==2.2.1"
|
92 |
+
},
|
93 |
+
"attrs": {
|
94 |
+
"hashes": [
|
95 |
+
"sha256:29e95c7f6778868dbd49170f98f8818f78f3dc5e0e37c0b1f474e3561b240836",
|
96 |
+
"sha256:c9227bfc2f01993c03f68db37d1d15c9690188323c067c641f1a35ca58185f99"
|
97 |
+
],
|
98 |
+
"markers": "python_version >= '3.6'",
|
99 |
+
"version": "==22.2.0"
|
100 |
+
},
|
101 |
+
"babel": {
|
102 |
+
"hashes": [
|
103 |
+
"sha256:b4246fb7677d3b98f501a39d43396d3cafdc8eadb045f4a31be01863f655c610",
|
104 |
+
"sha256:cc2d99999cd01d44420ae725a21c9e3711b3aadc7976d6147f622d8581963455"
|
105 |
+
],
|
106 |
+
"markers": "python_version >= '3.7'",
|
107 |
+
"version": "==2.12.1"
|
108 |
+
},
|
109 |
+
"backcall": {
|
110 |
+
"hashes": [
|
111 |
+
"sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e",
|
112 |
+
"sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"
|
113 |
+
],
|
114 |
+
"version": "==0.2.0"
|
115 |
+
},
|
116 |
+
"beautifulsoup4": {
|
117 |
+
"hashes": [
|
118 |
+
"sha256:0e79446b10b3ecb499c1556f7e228a53e64a2bfcebd455f370d8927cb5b59e39",
|
119 |
+
"sha256:bc4bdda6717de5a2987436fb8d72f45dc90dd856bdfd512a1314ce90349a0106"
|
120 |
+
],
|
121 |
+
"markers": "python_full_version >= '3.6.0'",
|
122 |
+
"version": "==4.11.2"
|
123 |
+
},
|
124 |
+
"black": {
|
125 |
+
"hashes": [
|
126 |
+
"sha256:0052dba51dec07ed029ed61b18183942043e00008ec65d5028814afaab9a22fd",
|
127 |
+
"sha256:0680d4380db3719ebcfb2613f34e86c8e6d15ffeabcf8ec59355c5e7b85bb555",
|
128 |
+
"sha256:121ca7f10b4a01fd99951234abdbd97728e1240be89fde18480ffac16503d481",
|
129 |
+
"sha256:162e37d49e93bd6eb6f1afc3e17a3d23a823042530c37c3c42eeeaf026f38468",
|
130 |
+
"sha256:2a951cc83ab535d248c89f300eccbd625e80ab880fbcfb5ac8afb5f01a258ac9",
|
131 |
+
"sha256:2bf649fda611c8550ca9d7592b69f0637218c2369b7744694c5e4902873b2f3a",
|
132 |
+
"sha256:382998821f58e5c8238d3166c492139573325287820963d2f7de4d518bd76958",
|
133 |
+
"sha256:49f7b39e30f326a34b5c9a4213213a6b221d7ae9d58ec70df1c4a307cf2a1580",
|
134 |
+
"sha256:57c18c5165c1dbe291d5306e53fb3988122890e57bd9b3dcb75f967f13411a26",
|
135 |
+
"sha256:7a0f701d314cfa0896b9001df70a530eb2472babb76086344e688829efd97d32",
|
136 |
+
"sha256:8178318cb74f98bc571eef19068f6ab5613b3e59d4f47771582f04e175570ed8",
|
137 |
+
"sha256:8b70eb40a78dfac24842458476135f9b99ab952dd3f2dab738c1881a9b38b753",
|
138 |
+
"sha256:9880d7d419bb7e709b37e28deb5e68a49227713b623c72b2b931028ea65f619b",
|
139 |
+
"sha256:9afd3f493666a0cd8f8df9a0200c6359ac53940cbde049dcb1a7eb6ee2dd7074",
|
140 |
+
"sha256:a29650759a6a0944e7cca036674655c2f0f63806ddecc45ed40b7b8aa314b651",
|
141 |
+
"sha256:a436e7881d33acaf2536c46a454bb964a50eff59b21b51c6ccf5a40601fbef24",
|
142 |
+
"sha256:a59db0a2094d2259c554676403fa2fac3473ccf1354c1c63eccf7ae65aac8ab6",
|
143 |
+
"sha256:a8471939da5e824b891b25751955be52ee7f8a30a916d570a5ba8e0f2eb2ecad",
|
144 |
+
"sha256:b0bd97bea8903f5a2ba7219257a44e3f1f9d00073d6cc1add68f0beec69692ac",
|
145 |
+
"sha256:b6a92a41ee34b883b359998f0c8e6eb8e99803aa8bf3123bf2b2e6fec505a221",
|
146 |
+
"sha256:bb460c8561c8c1bec7824ecbc3ce085eb50005883a6203dcfb0122e95797ee06",
|
147 |
+
"sha256:bfffba28dc52a58f04492181392ee380e95262af14ee01d4bc7bb1b1c6ca8d27",
|
148 |
+
"sha256:c1c476bc7b7d021321e7d93dc2cbd78ce103b84d5a4cf97ed535fbc0d6660648",
|
149 |
+
"sha256:c91dfc2c2a4e50df0026f88d2215e166616e0c80e86004d0003ece0488db2739",
|
150 |
+
"sha256:e6663f91b6feca5d06f2ccd49a10f254f9298cc1f7f49c46e498a0771b507104"
|
151 |
+
],
|
152 |
+
"index": "pypi",
|
153 |
+
"version": "==23.1.0"
|
154 |
+
},
|
155 |
+
"bleach": {
|
156 |
+
"hashes": [
|
157 |
+
"sha256:1a1a85c1595e07d8db14c5f09f09e6433502c51c595970edc090551f0db99414",
|
158 |
+
"sha256:33c16e3353dbd13028ab4799a0f89a83f113405c766e9c122df8a06f5b85b3f4"
|
159 |
+
],
|
160 |
+
"markers": "python_version >= '3.7'",
|
161 |
+
"version": "==6.0.0"
|
162 |
+
},
|
163 |
+
"certifi": {
|
164 |
+
"hashes": [
|
165 |
+
"sha256:35824b4c3a97115964b408844d64aa14db1cc518f6562e8d7261699d1350a9e3",
|
166 |
+
"sha256:4ad3232f5e926d6718ec31cfc1fcadfde020920e278684144551c91769c7bc18"
|
167 |
+
],
|
168 |
+
"markers": "python_version >= '3.6'",
|
169 |
+
"version": "==2022.12.7"
|
170 |
+
},
|
171 |
+
"cffi": {
|
172 |
+
"hashes": [
|
173 |
+
"sha256:00a9ed42e88df81ffae7a8ab6d9356b371399b91dbdf0c3cb1e84c03a13aceb5",
|
174 |
+
"sha256:03425bdae262c76aad70202debd780501fabeaca237cdfddc008987c0e0f59ef",
|
175 |
+
"sha256:04ed324bda3cda42b9b695d51bb7d54b680b9719cfab04227cdd1e04e5de3104",
|
176 |
+
"sha256:0e2642fe3142e4cc4af0799748233ad6da94c62a8bec3a6648bf8ee68b1c7426",
|
177 |
+
"sha256:173379135477dc8cac4bc58f45db08ab45d228b3363adb7af79436135d028405",
|
178 |
+
"sha256:198caafb44239b60e252492445da556afafc7d1e3ab7a1fb3f0584ef6d742375",
|
179 |
+
"sha256:1e74c6b51a9ed6589199c787bf5f9875612ca4a8a0785fb2d4a84429badaf22a",
|
180 |
+
"sha256:2012c72d854c2d03e45d06ae57f40d78e5770d252f195b93f581acf3ba44496e",
|
181 |
+
"sha256:21157295583fe8943475029ed5abdcf71eb3911894724e360acff1d61c1d54bc",
|
182 |
+
"sha256:2470043b93ff09bf8fb1d46d1cb756ce6132c54826661a32d4e4d132e1977adf",
|
183 |
+
"sha256:285d29981935eb726a4399badae8f0ffdff4f5050eaa6d0cfc3f64b857b77185",
|
184 |
+
"sha256:30d78fbc8ebf9c92c9b7823ee18eb92f2e6ef79b45ac84db507f52fbe3ec4497",
|
185 |
+
"sha256:320dab6e7cb2eacdf0e658569d2575c4dad258c0fcc794f46215e1e39f90f2c3",
|
186 |
+
"sha256:33ab79603146aace82c2427da5ca6e58f2b3f2fb5da893ceac0c42218a40be35",
|
187 |
+
"sha256:3548db281cd7d2561c9ad9984681c95f7b0e38881201e157833a2342c30d5e8c",
|
188 |
+
"sha256:3799aecf2e17cf585d977b780ce79ff0dc9b78d799fc694221ce814c2c19db83",
|
189 |
+
"sha256:39d39875251ca8f612b6f33e6b1195af86d1b3e60086068be9cc053aa4376e21",
|
190 |
+
"sha256:3b926aa83d1edb5aa5b427b4053dc420ec295a08e40911296b9eb1b6170f6cca",
|
191 |
+
"sha256:3bcde07039e586f91b45c88f8583ea7cf7a0770df3a1649627bf598332cb6984",
|
192 |
+
"sha256:3d08afd128ddaa624a48cf2b859afef385b720bb4b43df214f85616922e6a5ac",
|
193 |
+
"sha256:3eb6971dcff08619f8d91607cfc726518b6fa2a9eba42856be181c6d0d9515fd",
|
194 |
+
"sha256:40f4774f5a9d4f5e344f31a32b5096977b5d48560c5592e2f3d2c4374bd543ee",
|
195 |
+
"sha256:4289fc34b2f5316fbb762d75362931e351941fa95fa18789191b33fc4cf9504a",
|
196 |
+
"sha256:470c103ae716238bbe698d67ad020e1db9d9dba34fa5a899b5e21577e6d52ed2",
|
197 |
+
"sha256:4f2c9f67e9821cad2e5f480bc8d83b8742896f1242dba247911072d4fa94c192",
|
198 |
+
"sha256:50a74364d85fd319352182ef59c5c790484a336f6db772c1a9231f1c3ed0cbd7",
|
199 |
+
"sha256:54a2db7b78338edd780e7ef7f9f6c442500fb0d41a5a4ea24fff1c929d5af585",
|
200 |
+
"sha256:5635bd9cb9731e6d4a1132a498dd34f764034a8ce60cef4f5319c0541159392f",
|
201 |
+
"sha256:59c0b02d0a6c384d453fece7566d1c7e6b7bae4fc5874ef2ef46d56776d61c9e",
|
202 |
+
"sha256:5d598b938678ebf3c67377cdd45e09d431369c3b1a5b331058c338e201f12b27",
|
203 |
+
"sha256:5df2768244d19ab7f60546d0c7c63ce1581f7af8b5de3eb3004b9b6fc8a9f84b",
|
204 |
+
"sha256:5ef34d190326c3b1f822a5b7a45f6c4535e2f47ed06fec77d3d799c450b2651e",
|
205 |
+
"sha256:6975a3fac6bc83c4a65c9f9fcab9e47019a11d3d2cf7f3c0d03431bf145a941e",
|
206 |
+
"sha256:6c9a799e985904922a4d207a94eae35c78ebae90e128f0c4e521ce339396be9d",
|
207 |
+
"sha256:70df4e3b545a17496c9b3f41f5115e69a4f2e77e94e1d2a8e1070bc0c38c8a3c",
|
208 |
+
"sha256:7473e861101c9e72452f9bf8acb984947aa1661a7704553a9f6e4baa5ba64415",
|
209 |
+
"sha256:8102eaf27e1e448db915d08afa8b41d6c7ca7a04b7d73af6514df10a3e74bd82",
|
210 |
+
"sha256:87c450779d0914f2861b8526e035c5e6da0a3199d8f1add1a665e1cbc6fc6d02",
|
211 |
+
"sha256:8b7ee99e510d7b66cdb6c593f21c043c248537a32e0bedf02e01e9553a172314",
|
212 |
+
"sha256:91fc98adde3d7881af9b59ed0294046f3806221863722ba7d8d120c575314325",
|
213 |
+
"sha256:94411f22c3985acaec6f83c6df553f2dbe17b698cc7f8ae751ff2237d96b9e3c",
|
214 |
+
"sha256:98d85c6a2bef81588d9227dde12db8a7f47f639f4a17c9ae08e773aa9c697bf3",
|
215 |
+
"sha256:9ad5db27f9cabae298d151c85cf2bad1d359a1b9c686a275df03385758e2f914",
|
216 |
+
"sha256:a0b71b1b8fbf2b96e41c4d990244165e2c9be83d54962a9a1d118fd8657d2045",
|
217 |
+
"sha256:a0f100c8912c114ff53e1202d0078b425bee3649ae34d7b070e9697f93c5d52d",
|
218 |
+
"sha256:a591fe9e525846e4d154205572a029f653ada1a78b93697f3b5a8f1f2bc055b9",
|
219 |
+
"sha256:a5c84c68147988265e60416b57fc83425a78058853509c1b0629c180094904a5",
|
220 |
+
"sha256:a66d3508133af6e8548451b25058d5812812ec3798c886bf38ed24a98216fab2",
|
221 |
+
"sha256:a8c4917bd7ad33e8eb21e9a5bbba979b49d9a97acb3a803092cbc1133e20343c",
|
222 |
+
"sha256:b3bbeb01c2b273cca1e1e0c5df57f12dce9a4dd331b4fa1635b8bec26350bde3",
|
223 |
+
"sha256:cba9d6b9a7d64d4bd46167096fc9d2f835e25d7e4c121fb2ddfc6528fb0413b2",
|
224 |
+
"sha256:cc4d65aeeaa04136a12677d3dd0b1c0c94dc43abac5860ab33cceb42b801c1e8",
|
225 |
+
"sha256:ce4bcc037df4fc5e3d184794f27bdaab018943698f4ca31630bc7f84a7b69c6d",
|
226 |
+
"sha256:cec7d9412a9102bdc577382c3929b337320c4c4c4849f2c5cdd14d7368c5562d",
|
227 |
+
"sha256:d400bfb9a37b1351253cb402671cea7e89bdecc294e8016a707f6d1d8ac934f9",
|
228 |
+
"sha256:d61f4695e6c866a23a21acab0509af1cdfd2c013cf256bbf5b6b5e2695827162",
|
229 |
+
"sha256:db0fbb9c62743ce59a9ff687eb5f4afbe77e5e8403d6697f7446e5f609976f76",
|
230 |
+
"sha256:dd86c085fae2efd48ac91dd7ccffcfc0571387fe1193d33b6394db7ef31fe2a4",
|
231 |
+
"sha256:e00b098126fd45523dd056d2efba6c5a63b71ffe9f2bbe1a4fe1716e1d0c331e",
|
232 |
+
"sha256:e229a521186c75c8ad9490854fd8bbdd9a0c9aa3a524326b55be83b54d4e0ad9",
|
233 |
+
"sha256:e263d77ee3dd201c3a142934a086a4450861778baaeeb45db4591ef65550b0a6",
|
234 |
+
"sha256:ed9cb427ba5504c1dc15ede7d516b84757c3e3d7868ccc85121d9310d27eed0b",
|
235 |
+
"sha256:fa6693661a4c91757f4412306191b6dc88c1703f780c8234035eac011922bc01",
|
236 |
+
"sha256:fcd131dd944808b5bdb38e6f5b53013c5aa4f334c5cad0c72742f6eba4b73db0"
|
237 |
+
],
|
238 |
+
"version": "==1.15.1"
|
239 |
+
},
|
240 |
+
"charset-normalizer": {
|
241 |
+
"hashes": [
|
242 |
+
"sha256:04afa6387e2b282cf78ff3dbce20f0cc071c12dc8f685bd40960cc68644cfea6",
|
243 |
+
"sha256:04eefcee095f58eaabe6dc3cc2262f3bcd776d2c67005880894f447b3f2cb9c1",
|
244 |
+
"sha256:0be65ccf618c1e7ac9b849c315cc2e8a8751d9cfdaa43027d4f6624bd587ab7e",
|
245 |
+
"sha256:0c95f12b74681e9ae127728f7e5409cbbef9cd914d5896ef238cc779b8152373",
|
246 |
+
"sha256:0ca564606d2caafb0abe6d1b5311c2649e8071eb241b2d64e75a0d0065107e62",
|
247 |
+
"sha256:10c93628d7497c81686e8e5e557aafa78f230cd9e77dd0c40032ef90c18f2230",
|
248 |
+
"sha256:11d117e6c63e8f495412d37e7dc2e2fff09c34b2d09dbe2bee3c6229577818be",
|
249 |
+
"sha256:11d3bcb7be35e7b1bba2c23beedac81ee893ac9871d0ba79effc7fc01167db6c",
|
250 |
+
"sha256:12a2b561af122e3d94cdb97fe6fb2bb2b82cef0cdca131646fdb940a1eda04f0",
|
251 |
+
"sha256:12d1a39aa6b8c6f6248bb54550efcc1c38ce0d8096a146638fd4738e42284448",
|
252 |
+
"sha256:1435ae15108b1cb6fffbcea2af3d468683b7afed0169ad718451f8db5d1aff6f",
|
253 |
+
"sha256:1c60b9c202d00052183c9be85e5eaf18a4ada0a47d188a83c8f5c5b23252f649",
|
254 |
+
"sha256:1e8fcdd8f672a1c4fc8d0bd3a2b576b152d2a349782d1eb0f6b8e52e9954731d",
|
255 |
+
"sha256:20064ead0717cf9a73a6d1e779b23d149b53daf971169289ed2ed43a71e8d3b0",
|
256 |
+
"sha256:21fa558996782fc226b529fdd2ed7866c2c6ec91cee82735c98a197fae39f706",
|
257 |
+
"sha256:22908891a380d50738e1f978667536f6c6b526a2064156203d418f4856d6e86a",
|
258 |
+
"sha256:3160a0fd9754aab7d47f95a6b63ab355388d890163eb03b2d2b87ab0a30cfa59",
|
259 |
+
"sha256:322102cdf1ab682ecc7d9b1c5eed4ec59657a65e1c146a0da342b78f4112db23",
|
260 |
+
"sha256:34e0a2f9c370eb95597aae63bf85eb5e96826d81e3dcf88b8886012906f509b5",
|
261 |
+
"sha256:3573d376454d956553c356df45bb824262c397c6e26ce43e8203c4c540ee0acb",
|
262 |
+
"sha256:3747443b6a904001473370d7810aa19c3a180ccd52a7157aacc264a5ac79265e",
|
263 |
+
"sha256:38e812a197bf8e71a59fe55b757a84c1f946d0ac114acafaafaf21667a7e169e",
|
264 |
+
"sha256:3a06f32c9634a8705f4ca9946d667609f52cf130d5548881401f1eb2c39b1e2c",
|
265 |
+
"sha256:3a5fc78f9e3f501a1614a98f7c54d3969f3ad9bba8ba3d9b438c3bc5d047dd28",
|
266 |
+
"sha256:3d9098b479e78c85080c98e1e35ff40b4a31d8953102bb0fd7d1b6f8a2111a3d",
|
267 |
+
"sha256:3dc5b6a8ecfdc5748a7e429782598e4f17ef378e3e272eeb1340ea57c9109f41",
|
268 |
+
"sha256:4155b51ae05ed47199dc5b2a4e62abccb274cee6b01da5b895099b61b1982974",
|
269 |
+
"sha256:49919f8400b5e49e961f320c735388ee686a62327e773fa5b3ce6721f7e785ce",
|
270 |
+
"sha256:53d0a3fa5f8af98a1e261de6a3943ca631c526635eb5817a87a59d9a57ebf48f",
|
271 |
+
"sha256:5f008525e02908b20e04707a4f704cd286d94718f48bb33edddc7d7b584dddc1",
|
272 |
+
"sha256:628c985afb2c7d27a4800bfb609e03985aaecb42f955049957814e0491d4006d",
|
273 |
+
"sha256:65ed923f84a6844de5fd29726b888e58c62820e0769b76565480e1fdc3d062f8",
|
274 |
+
"sha256:6734e606355834f13445b6adc38b53c0fd45f1a56a9ba06c2058f86893ae8017",
|
275 |
+
"sha256:6baf0baf0d5d265fa7944feb9f7451cc316bfe30e8df1a61b1bb08577c554f31",
|
276 |
+
"sha256:6f4f4668e1831850ebcc2fd0b1cd11721947b6dc7c00bf1c6bd3c929ae14f2c7",
|
277 |
+
"sha256:6f5c2e7bc8a4bf7c426599765b1bd33217ec84023033672c1e9a8b35eaeaaaf8",
|
278 |
+
"sha256:6f6c7a8a57e9405cad7485f4c9d3172ae486cfef1344b5ddd8e5239582d7355e",
|
279 |
+
"sha256:7381c66e0561c5757ffe616af869b916c8b4e42b367ab29fedc98481d1e74e14",
|
280 |
+
"sha256:73dc03a6a7e30b7edc5b01b601e53e7fc924b04e1835e8e407c12c037e81adbd",
|
281 |
+
"sha256:74db0052d985cf37fa111828d0dd230776ac99c740e1a758ad99094be4f1803d",
|
282 |
+
"sha256:75f2568b4189dda1c567339b48cba4ac7384accb9c2a7ed655cd86b04055c795",
|
283 |
+
"sha256:78cacd03e79d009d95635e7d6ff12c21eb89b894c354bd2b2ed0b4763373693b",
|
284 |
+
"sha256:80d1543d58bd3d6c271b66abf454d437a438dff01c3e62fdbcd68f2a11310d4b",
|
285 |
+
"sha256:830d2948a5ec37c386d3170c483063798d7879037492540f10a475e3fd6f244b",
|
286 |
+
"sha256:891cf9b48776b5c61c700b55a598621fdb7b1e301a550365571e9624f270c203",
|
287 |
+
"sha256:8f25e17ab3039b05f762b0a55ae0b3632b2e073d9c8fc88e89aca31a6198e88f",
|
288 |
+
"sha256:9a3267620866c9d17b959a84dd0bd2d45719b817245e49371ead79ed4f710d19",
|
289 |
+
"sha256:a04f86f41a8916fe45ac5024ec477f41f886b3c435da2d4e3d2709b22ab02af1",
|
290 |
+
"sha256:aaf53a6cebad0eae578f062c7d462155eada9c172bd8c4d250b8c1d8eb7f916a",
|
291 |
+
"sha256:abc1185d79f47c0a7aaf7e2412a0eb2c03b724581139193d2d82b3ad8cbb00ac",
|
292 |
+
"sha256:ac0aa6cd53ab9a31d397f8303f92c42f534693528fafbdb997c82bae6e477ad9",
|
293 |
+
"sha256:ac3775e3311661d4adace3697a52ac0bab17edd166087d493b52d4f4f553f9f0",
|
294 |
+
"sha256:b06f0d3bf045158d2fb8837c5785fe9ff9b8c93358be64461a1089f5da983137",
|
295 |
+
"sha256:b116502087ce8a6b7a5f1814568ccbd0e9f6cfd99948aa59b0e241dc57cf739f",
|
296 |
+
"sha256:b82fab78e0b1329e183a65260581de4375f619167478dddab510c6c6fb04d9b6",
|
297 |
+
"sha256:bd7163182133c0c7701b25e604cf1611c0d87712e56e88e7ee5d72deab3e76b5",
|
298 |
+
"sha256:c36bcbc0d5174a80d6cccf43a0ecaca44e81d25be4b7f90f0ed7bcfbb5a00909",
|
299 |
+
"sha256:c3af8e0f07399d3176b179f2e2634c3ce9c1301379a6b8c9c9aeecd481da494f",
|
300 |
+
"sha256:c84132a54c750fda57729d1e2599bb598f5fa0344085dbde5003ba429a4798c0",
|
301 |
+
"sha256:cb7b2ab0188829593b9de646545175547a70d9a6e2b63bf2cd87a0a391599324",
|
302 |
+
"sha256:cca4def576f47a09a943666b8f829606bcb17e2bc2d5911a46c8f8da45f56755",
|
303 |
+
"sha256:cf6511efa4801b9b38dc5546d7547d5b5c6ef4b081c60b23e4d941d0eba9cbeb",
|
304 |
+
"sha256:d16fd5252f883eb074ca55cb622bc0bee49b979ae4e8639fff6ca3ff44f9f854",
|
305 |
+
"sha256:d2686f91611f9e17f4548dbf050e75b079bbc2a82be565832bc8ea9047b61c8c",
|
306 |
+
"sha256:d7fc3fca01da18fbabe4625d64bb612b533533ed10045a2ac3dd194bfa656b60",
|
307 |
+
"sha256:dd5653e67b149503c68c4018bf07e42eeed6b4e956b24c00ccdf93ac79cdff84",
|
308 |
+
"sha256:de5695a6f1d8340b12a5d6d4484290ee74d61e467c39ff03b39e30df62cf83a0",
|
309 |
+
"sha256:e0ac8959c929593fee38da1c2b64ee9778733cdf03c482c9ff1d508b6b593b2b",
|
310 |
+
"sha256:e1b25e3ad6c909f398df8921780d6a3d120d8c09466720226fc621605b6f92b1",
|
311 |
+
"sha256:e633940f28c1e913615fd624fcdd72fdba807bf53ea6925d6a588e84e1151531",
|
312 |
+
"sha256:e89df2958e5159b811af9ff0f92614dabf4ff617c03a4c1c6ff53bf1c399e0e1",
|
313 |
+
"sha256:ea9f9c6034ea2d93d9147818f17c2a0860d41b71c38b9ce4d55f21b6f9165a11",
|
314 |
+
"sha256:f645caaf0008bacf349875a974220f1f1da349c5dbe7c4ec93048cdc785a3326",
|
315 |
+
"sha256:f8303414c7b03f794347ad062c0516cee0e15f7a612abd0ce1e25caf6ceb47df",
|
316 |
+
"sha256:fca62a8301b605b954ad2e9c3666f9d97f63872aa4efcae5492baca2056b74ab"
|
317 |
+
],
|
318 |
+
"markers": "python_full_version >= '3.7.0'",
|
319 |
+
"version": "==3.1.0"
|
320 |
+
},
|
321 |
+
"click": {
|
322 |
+
"hashes": [
|
323 |
+
"sha256:7682dc8afb30297001674575ea00d1814d808d6a36af415a82bd481d37ba7b8e",
|
324 |
+
"sha256:bb4d8133cb15a609f44e8213d9b391b0809795062913b383c62be0ee95b1db48"
|
325 |
+
],
|
326 |
+
"markers": "python_version >= '3.7'",
|
327 |
+
"version": "==8.1.3"
|
328 |
+
},
|
329 |
+
"comm": {
|
330 |
+
"hashes": [
|
331 |
+
"sha256:3e2f5826578e683999b93716285b3b1f344f157bf75fa9ce0a797564e742f062",
|
332 |
+
"sha256:9f3abf3515112fa7c55a42a6a5ab358735c9dccc8b5910a9d8e3ef5998130666"
|
333 |
+
],
|
334 |
+
"markers": "python_version >= '3.6'",
|
335 |
+
"version": "==0.1.2"
|
336 |
+
},
|
337 |
+
"debugpy": {
|
338 |
+
"hashes": [
|
339 |
+
"sha256:0ea1011e94416e90fb3598cc3ef5e08b0a4dd6ce6b9b33ccd436c1dffc8cd664",
|
340 |
+
"sha256:23363e6d2a04d726bbc1400bd4e9898d54419b36b2cdf7020e3e215e1dcd0f8e",
|
341 |
+
"sha256:23c29e40e39ad7d869d408ded414f6d46d82f8a93b5857ac3ac1e915893139ca",
|
342 |
+
"sha256:549ae0cb2d34fc09d1675f9b01942499751d174381b6082279cf19cdb3c47cbe",
|
343 |
+
"sha256:70ab53918fd907a3ade01909b3ed783287ede362c80c75f41e79596d5ccacd32",
|
344 |
+
"sha256:72687b62a54d9d9e3fb85e7a37ea67f0e803aaa31be700e61d2f3742a5683917",
|
345 |
+
"sha256:78739f77c58048ec006e2b3eb2e0cd5a06d5f48c915e2fc7911a337354508110",
|
346 |
+
"sha256:7aa7e103610e5867d19a7d069e02e72eb2b3045b124d051cfd1538f1d8832d1b",
|
347 |
+
"sha256:87755e173fcf2ec45f584bb9d61aa7686bb665d861b81faa366d59808bbd3494",
|
348 |
+
"sha256:9b5d1b13d7c7bf5d7cf700e33c0b8ddb7baf030fcf502f76fc061ddd9405d16c",
|
349 |
+
"sha256:a771739902b1ae22a120dbbb6bd91b2cae6696c0e318b5007c5348519a4211c6",
|
350 |
+
"sha256:b9c2130e1c632540fbf9c2c88341493797ddf58016e7cba02e311de9b0a96b67",
|
351 |
+
"sha256:be596b44448aac14eb3614248c91586e2bc1728e020e82ef3197189aae556115",
|
352 |
+
"sha256:c05349890804d846eca32ce0623ab66c06f8800db881af7a876dc073ac1c2225",
|
353 |
+
"sha256:de4a045fbf388e120bb6ec66501458d3134f4729faed26ff95de52a754abddb1",
|
354 |
+
"sha256:dff595686178b0e75580c24d316aa45a8f4d56e2418063865c114eef651a982e",
|
355 |
+
"sha256:f6383c29e796203a0bba74a250615ad262c4279d398e89d895a69d3069498305"
|
356 |
+
],
|
357 |
+
"markers": "python_version >= '3.7'",
|
358 |
+
"version": "==1.6.6"
|
359 |
+
},
|
360 |
+
"decorator": {
|
361 |
+
"hashes": [
|
362 |
+
"sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330",
|
363 |
+
"sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"
|
364 |
+
],
|
365 |
+
"markers": "python_version >= '3.5'",
|
366 |
+
"version": "==5.1.1"
|
367 |
+
},
|
368 |
+
"defusedxml": {
|
369 |
+
"hashes": [
|
370 |
+
"sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69",
|
371 |
+
"sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"
|
372 |
+
],
|
373 |
+
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'",
|
374 |
+
"version": "==0.7.1"
|
375 |
+
},
|
376 |
+
"executing": {
|
377 |
+
"hashes": [
|
378 |
+
"sha256:0314a69e37426e3608aada02473b4161d4caf5a4b244d1d0c48072b8fee7bacc",
|
379 |
+
"sha256:19da64c18d2d851112f09c287f8d3dbbdf725ab0e569077efb6cdcbd3497c107"
|
380 |
+
],
|
381 |
+
"version": "==1.2.0"
|
382 |
+
},
|
383 |
+
"fastjsonschema": {
|
384 |
+
"hashes": [
|
385 |
+
"sha256:04fbecc94300436f628517b05741b7ea009506ce8f946d40996567c669318490",
|
386 |
+
"sha256:4a30d6315a68c253cfa8f963b9697246315aa3db89f98b97235e345dedfb0b8e"
|
387 |
+
],
|
388 |
+
"version": "==2.16.3"
|
389 |
+
},
|
390 |
+
"fqdn": {
|
391 |
+
"hashes": [
|
392 |
+
"sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f",
|
393 |
+
"sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"
|
394 |
+
],
|
395 |
+
"version": "==1.5.1"
|
396 |
+
},
|
397 |
+
"idna": {
|
398 |
+
"hashes": [
|
399 |
+
"sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4",
|
400 |
+
"sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"
|
401 |
+
],
|
402 |
+
"markers": "python_version >= '3.5'",
|
403 |
+
"version": "==3.4"
|
404 |
+
},
|
405 |
+
"ipykernel": {
|
406 |
+
"hashes": [
|
407 |
+
"sha256:24ebd9715e317c185e37156ab3a87382410185230dde7aeffce389d6c7d4428a",
|
408 |
+
"sha256:c8ff581905d70e7299bc1473a2f7c113bec1744fb3746d58e5b4b93bd8ee7001"
|
409 |
+
],
|
410 |
+
"markers": "python_version >= '3.8'",
|
411 |
+
"version": "==6.21.3"
|
412 |
+
},
|
413 |
+
"ipython": {
|
414 |
+
"hashes": [
|
415 |
+
"sha256:5b54478e459155a326bf5f42ee4f29df76258c0279c36f21d71ddb560f88b156",
|
416 |
+
"sha256:735cede4099dbc903ee540307b9171fbfef4aa75cfcacc5a273b2cda2f02be04"
|
417 |
+
],
|
418 |
+
"index": "pypi",
|
419 |
+
"version": "==8.11.0"
|
420 |
+
},
|
421 |
+
"ipython-genutils": {
|
422 |
+
"hashes": [
|
423 |
+
"sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8",
|
424 |
+
"sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"
|
425 |
+
],
|
426 |
+
"version": "==0.2.0"
|
427 |
+
},
|
428 |
+
"isoduration": {
|
429 |
+
"hashes": [
|
430 |
+
"sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9",
|
431 |
+
"sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"
|
432 |
+
],
|
433 |
+
"version": "==20.11.0"
|
434 |
+
},
|
435 |
+
"jedi": {
|
436 |
+
"hashes": [
|
437 |
+
"sha256:203c1fd9d969ab8f2119ec0a3342e0b49910045abe6af0a3ae83a5764d54639e",
|
438 |
+
"sha256:bae794c30d07f6d910d32a7048af09b5a39ed740918da923c6b780790ebac612"
|
439 |
+
],
|
440 |
+
"markers": "python_version >= '3.6'",
|
441 |
+
"version": "==0.18.2"
|
442 |
+
},
|
443 |
+
"jinja2": {
|
444 |
+
"hashes": [
|
445 |
+
"sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852",
|
446 |
+
"sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"
|
447 |
+
],
|
448 |
+
"markers": "python_version >= '3.7'",
|
449 |
+
"version": "==3.1.2"
|
450 |
+
},
|
451 |
+
"joblib": {
|
452 |
+
"hashes": [
|
453 |
+
"sha256:091138ed78f800342968c523bdde947e7a305b8594b910a0fea2ab83c3c6d385",
|
454 |
+
"sha256:e1cee4a79e4af22881164f218d4311f60074197fb707e082e803b61f6d137018"
|
455 |
+
],
|
456 |
+
"markers": "python_version >= '3.7'",
|
457 |
+
"version": "==1.2.0"
|
458 |
+
},
|
459 |
+
"json5": {
|
460 |
+
"hashes": [
|
461 |
+
"sha256:1aa54b80b5e507dfe31d12b7743a642e2ffa6f70bf73b8e3d7d1d5fba83d99bd",
|
462 |
+
"sha256:4f1e196acc55b83985a51318489f345963c7ba84aa37607e49073066c562e99b"
|
463 |
+
],
|
464 |
+
"version": "==0.9.11"
|
465 |
+
},
|
466 |
+
"jsonpointer": {
|
467 |
+
"hashes": [
|
468 |
+
"sha256:51801e558539b4e9cd268638c078c6c5746c9ac96bc38152d443400e4f3793e9",
|
469 |
+
"sha256:97cba51526c829282218feb99dab1b1e6bdf8efd1c43dc9d57be093c0d69c99a"
|
470 |
+
],
|
471 |
+
"version": "==2.3"
|
472 |
+
},
|
473 |
+
"jsonschema": {
|
474 |
+
"hashes": [
|
475 |
+
"sha256:0f864437ab8b6076ba6707453ef8f98a6a0d512a80e93f8abdb676f737ecb60d",
|
476 |
+
"sha256:a870ad254da1a8ca84b6a2905cac29d265f805acc57af304784962a2aa6508f6"
|
477 |
+
],
|
478 |
+
"markers": "python_version >= '3.7'",
|
479 |
+
"version": "==4.17.3"
|
480 |
+
},
|
481 |
+
"jupyter-client": {
|
482 |
+
"hashes": [
|
483 |
+
"sha256:be48ac6bd659cbbddb7a674cf06b3b8afbf53f228253cf58bde604c03bd487b0",
|
484 |
+
"sha256:ed65498bea6d876ef9d8da3e0db3dd33c5d129f5b2645f56ae03993782966bd0"
|
485 |
+
],
|
486 |
+
"markers": "python_version >= '3.8'",
|
487 |
+
"version": "==8.0.3"
|
488 |
+
},
|
489 |
+
"jupyter-core": {
|
490 |
+
"hashes": [
|
491 |
+
"sha256:1407cdb4c79ee467696c04b76633fc1884015fa109323365a6372c8e890cc83f",
|
492 |
+
"sha256:4bdc2928c37f6917130c667d8b8708f20aee539d8283c6be72aabd2a4b4c83b0"
|
493 |
+
],
|
494 |
+
"markers": "python_version >= '3.8'",
|
495 |
+
"version": "==5.2.0"
|
496 |
+
},
|
497 |
+
"jupyter-events": {
|
498 |
+
"hashes": [
|
499 |
+
"sha256:57a2749f87ba387cd1bfd9b22a0875b889237dbf2edc2121ebb22bde47036c17",
|
500 |
+
"sha256:9a6e9995f75d1b7146b436ea24d696ce3a35bfa8bfe45e0c33c334c79464d0b3"
|
501 |
+
],
|
502 |
+
"markers": "python_version >= '3.7'",
|
503 |
+
"version": "==0.6.3"
|
504 |
+
},
|
505 |
+
"jupyter-server": {
|
506 |
+
"hashes": [
|
507 |
+
"sha256:cc22792281bfb0131a728414f28ae74883b44ad6d009971aa975cae9bcc650de",
|
508 |
+
"sha256:f31f0ba2c3c44f07143bfa03fb07dd0253f857eb63f0c26f2fea955f04a49765"
|
509 |
+
],
|
510 |
+
"markers": "python_version >= '3.8'",
|
511 |
+
"version": "==2.4.0"
|
512 |
+
},
|
513 |
+
"jupyter-server-fileid": {
|
514 |
+
"hashes": [
|
515 |
+
"sha256:1e0816d0857f490fadea11348570f0cba03f70f315c9842225aecfa45882b6af",
|
516 |
+
"sha256:6092ef114eddccf6cba69c0f0feb612c2f476f2e9467828809edb854c18806bb"
|
517 |
+
],
|
518 |
+
"markers": "python_version >= '3.7'",
|
519 |
+
"version": "==0.8.0"
|
520 |
+
},
|
521 |
+
"jupyter-server-terminals": {
|
522 |
+
"hashes": [
|
523 |
+
"sha256:57ab779797c25a7ba68e97bcfb5d7740f2b5e8a83b5e8102b10438041a7eac5d",
|
524 |
+
"sha256:75779164661cec02a8758a5311e18bb8eb70c4e86c6b699403100f1585a12a36"
|
525 |
+
],
|
526 |
+
"markers": "python_version >= '3.8'",
|
527 |
+
"version": "==0.4.4"
|
528 |
+
},
|
529 |
+
"jupyter-server-ydoc": {
|
530 |
+
"hashes": [
|
531 |
+
"sha256:18275ff1ce7e93bbda2301ca066273b3951fc50b0d9c8fc33788374134ad7920",
|
532 |
+
"sha256:ab10864708c81fa41ab9f2ed3626b54ff6926eaf14545d1d439714978dad6e9f"
|
533 |
+
],
|
534 |
+
"markers": "python_version >= '3.7'",
|
535 |
+
"version": "==0.6.1"
|
536 |
+
},
|
537 |
+
"jupyter-ydoc": {
|
538 |
+
"hashes": [
|
539 |
+
"sha256:3163bd4745eedd46d4bba6df52ab26be3c5c44c3a8aaf247635062486ea8f84f",
|
540 |
+
"sha256:596a9ae5986b59f8776c42430b5ad516405963574078ab801781933c9690be93"
|
541 |
+
],
|
542 |
+
"markers": "python_version >= '3.7'",
|
543 |
+
"version": "==0.2.2"
|
544 |
+
},
|
545 |
+
"jupyterlab": {
|
546 |
+
"hashes": [
|
547 |
+
"sha256:ad6707dd0149b629d0ed5b56916cfcdb816b376c6af3190337faba09e27ea29e",
|
548 |
+
"sha256:aee98c174180e98a30470297d10b959e8e64f2288970c0de65f0a6d2b4807034"
|
549 |
+
],
|
550 |
+
"index": "pypi",
|
551 |
+
"version": "==3.6.1"
|
552 |
+
},
|
553 |
+
"jupyterlab-pygments": {
|
554 |
+
"hashes": [
|
555 |
+
"sha256:2405800db07c9f770863bcf8049a529c3dd4d3e28536638bd7c1c01d2748309f",
|
556 |
+
"sha256:7405d7fde60819d905a9fa8ce89e4cd830e318cdad22a0030f7a901da705585d"
|
557 |
+
],
|
558 |
+
"markers": "python_version >= '3.7'",
|
559 |
+
"version": "==0.2.2"
|
560 |
+
},
|
561 |
+
"jupyterlab-server": {
|
562 |
+
"hashes": [
|
563 |
+
"sha256:0203f96913187a9e7a6c8cef3556b499d2be67f014ad4ce9b76c8dcdcadb2367",
|
564 |
+
"sha256:75e81a8ef23f561b70f5c9a76de2ab9ebb291358b371d6260f51af7e347da719"
|
565 |
+
],
|
566 |
+
"markers": "python_version >= '3.7'",
|
567 |
+
"version": "==2.20.0"
|
568 |
+
},
|
569 |
+
"markupsafe": {
|
570 |
+
"hashes": [
|
571 |
+
"sha256:0576fe974b40a400449768941d5d0858cc624e3249dfd1e0c33674e5c7ca7aed",
|
572 |
+
"sha256:085fd3201e7b12809f9e6e9bc1e5c96a368c8523fad5afb02afe3c051ae4afcc",
|
573 |
+
"sha256:090376d812fb6ac5f171e5938e82e7f2d7adc2b629101cec0db8b267815c85e2",
|
574 |
+
"sha256:0b462104ba25f1ac006fdab8b6a01ebbfbce9ed37fd37fd4acd70c67c973e460",
|
575 |
+
"sha256:137678c63c977754abe9086a3ec011e8fd985ab90631145dfb9294ad09c102a7",
|
576 |
+
"sha256:1bea30e9bf331f3fef67e0a3877b2288593c98a21ccb2cf29b74c581a4eb3af0",
|
577 |
+
"sha256:22152d00bf4a9c7c83960521fc558f55a1adbc0631fbb00a9471e097b19d72e1",
|
578 |
+
"sha256:22731d79ed2eb25059ae3df1dfc9cb1546691cc41f4e3130fe6bfbc3ecbbecfa",
|
579 |
+
"sha256:2298c859cfc5463f1b64bd55cb3e602528db6fa0f3cfd568d3605c50678f8f03",
|
580 |
+
"sha256:28057e985dace2f478e042eaa15606c7efccb700797660629da387eb289b9323",
|
581 |
+
"sha256:2e7821bffe00aa6bd07a23913b7f4e01328c3d5cc0b40b36c0bd81d362faeb65",
|
582 |
+
"sha256:2ec4f2d48ae59bbb9d1f9d7efb9236ab81429a764dedca114f5fdabbc3788013",
|
583 |
+
"sha256:340bea174e9761308703ae988e982005aedf427de816d1afe98147668cc03036",
|
584 |
+
"sha256:40627dcf047dadb22cd25ea7ecfe9cbf3bbbad0482ee5920b582f3809c97654f",
|
585 |
+
"sha256:40dfd3fefbef579ee058f139733ac336312663c6706d1163b82b3003fb1925c4",
|
586 |
+
"sha256:4cf06cdc1dda95223e9d2d3c58d3b178aa5dacb35ee7e3bbac10e4e1faacb419",
|
587 |
+
"sha256:50c42830a633fa0cf9e7d27664637532791bfc31c731a87b202d2d8ac40c3ea2",
|
588 |
+
"sha256:55f44b440d491028addb3b88f72207d71eeebfb7b5dbf0643f7c023ae1fba619",
|
589 |
+
"sha256:608e7073dfa9e38a85d38474c082d4281f4ce276ac0010224eaba11e929dd53a",
|
590 |
+
"sha256:63ba06c9941e46fa389d389644e2d8225e0e3e5ebcc4ff1ea8506dce646f8c8a",
|
591 |
+
"sha256:65608c35bfb8a76763f37036547f7adfd09270fbdbf96608be2bead319728fcd",
|
592 |
+
"sha256:665a36ae6f8f20a4676b53224e33d456a6f5a72657d9c83c2aa00765072f31f7",
|
593 |
+
"sha256:6d6607f98fcf17e534162f0709aaad3ab7a96032723d8ac8750ffe17ae5a0666",
|
594 |
+
"sha256:7313ce6a199651c4ed9d7e4cfb4aa56fe923b1adf9af3b420ee14e6d9a73df65",
|
595 |
+
"sha256:7668b52e102d0ed87cb082380a7e2e1e78737ddecdde129acadb0eccc5423859",
|
596 |
+
"sha256:7df70907e00c970c60b9ef2938d894a9381f38e6b9db73c5be35e59d92e06625",
|
597 |
+
"sha256:7e007132af78ea9df29495dbf7b5824cb71648d7133cf7848a2a5dd00d36f9ff",
|
598 |
+
"sha256:835fb5e38fd89328e9c81067fd642b3593c33e1e17e2fdbf77f5676abb14a156",
|
599 |
+
"sha256:8bca7e26c1dd751236cfb0c6c72d4ad61d986e9a41bbf76cb445f69488b2a2bd",
|
600 |
+
"sha256:8db032bf0ce9022a8e41a22598eefc802314e81b879ae093f36ce9ddf39ab1ba",
|
601 |
+
"sha256:99625a92da8229df6d44335e6fcc558a5037dd0a760e11d84be2260e6f37002f",
|
602 |
+
"sha256:9cad97ab29dfc3f0249b483412c85c8ef4766d96cdf9dcf5a1e3caa3f3661cf1",
|
603 |
+
"sha256:a4abaec6ca3ad8660690236d11bfe28dfd707778e2442b45addd2f086d6ef094",
|
604 |
+
"sha256:a6e40afa7f45939ca356f348c8e23048e02cb109ced1eb8420961b2f40fb373a",
|
605 |
+
"sha256:a6f2fcca746e8d5910e18782f976489939d54a91f9411c32051b4aab2bd7c513",
|
606 |
+
"sha256:a806db027852538d2ad7555b203300173dd1b77ba116de92da9afbc3a3be3eed",
|
607 |
+
"sha256:abcabc8c2b26036d62d4c746381a6f7cf60aafcc653198ad678306986b09450d",
|
608 |
+
"sha256:b8526c6d437855442cdd3d87eede9c425c4445ea011ca38d937db299382e6fa3",
|
609 |
+
"sha256:bb06feb762bade6bf3c8b844462274db0c76acc95c52abe8dbed28ae3d44a147",
|
610 |
+
"sha256:c0a33bc9f02c2b17c3ea382f91b4db0e6cde90b63b296422a939886a7a80de1c",
|
611 |
+
"sha256:c4a549890a45f57f1ebf99c067a4ad0cb423a05544accaf2b065246827ed9603",
|
612 |
+
"sha256:ca244fa73f50a800cf8c3ebf7fd93149ec37f5cb9596aa8873ae2c1d23498601",
|
613 |
+
"sha256:cf877ab4ed6e302ec1d04952ca358b381a882fbd9d1b07cccbfd61783561f98a",
|
614 |
+
"sha256:d9d971ec1e79906046aa3ca266de79eac42f1dbf3612a05dc9368125952bd1a1",
|
615 |
+
"sha256:da25303d91526aac3672ee6d49a2f3db2d9502a4a60b55519feb1a4c7714e07d",
|
616 |
+
"sha256:e55e40ff0cc8cc5c07996915ad367fa47da6b3fc091fdadca7f5403239c5fec3",
|
617 |
+
"sha256:f03a532d7dee1bed20bc4884194a16160a2de9ffc6354b3878ec9682bb623c54",
|
618 |
+
"sha256:f1cd098434e83e656abf198f103a8207a8187c0fc110306691a2e94a78d0abb2",
|
619 |
+
"sha256:f2bfb563d0211ce16b63c7cb9395d2c682a23187f54c3d79bfec33e6705473c6",
|
620 |
+
"sha256:f8ffb705ffcf5ddd0e80b65ddf7bed7ee4f5a441ea7d3419e861a12eaf41af58"
|
621 |
+
],
|
622 |
+
"markers": "python_version >= '3.7'",
|
623 |
+
"version": "==2.1.2"
|
624 |
+
},
|
625 |
+
"matplotlib-inline": {
|
626 |
+
"hashes": [
|
627 |
+
"sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311",
|
628 |
+
"sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"
|
629 |
+
],
|
630 |
+
"markers": "python_version >= '3.5'",
|
631 |
+
"version": "==0.1.6"
|
632 |
+
},
|
633 |
+
"mistune": {
|
634 |
+
"hashes": [
|
635 |
+
"sha256:0246113cb2492db875c6be56974a7c893333bf26cd92891c85f63151cee09d34",
|
636 |
+
"sha256:bad7f5d431886fcbaf5f758118ecff70d31f75231b34024a1341120340a65ce8"
|
637 |
+
],
|
638 |
+
"version": "==2.0.5"
|
639 |
+
},
|
640 |
+
"mypy-extensions": {
|
641 |
+
"hashes": [
|
642 |
+
"sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d",
|
643 |
+
"sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"
|
644 |
+
],
|
645 |
+
"markers": "python_version >= '3.5'",
|
646 |
+
"version": "==1.0.0"
|
647 |
+
},
|
648 |
+
"nbclassic": {
|
649 |
+
"hashes": [
|
650 |
+
"sha256:889772a7ba524eb781d2901f396540bcad41151e1f7e043f12ebc14a6540d342",
|
651 |
+
"sha256:e849277872d9ffd8fe4b39a8038d01ba82d6a1def9ce11b1b3c26c9546ed5131"
|
652 |
+
],
|
653 |
+
"markers": "python_version >= '3.7'",
|
654 |
+
"version": "==0.5.3"
|
655 |
+
},
|
656 |
+
"nbclient": {
|
657 |
+
"hashes": [
|
658 |
+
"sha256:884a3f4a8c4fc24bb9302f263e0af47d97f0d01fe11ba714171b320c8ac09547",
|
659 |
+
"sha256:d97ac6257de2794f5397609df754fcbca1a603e94e924eb9b99787c031ae2e7c"
|
660 |
+
],
|
661 |
+
"markers": "python_full_version >= '3.7.0'",
|
662 |
+
"version": "==0.7.2"
|
663 |
+
},
|
664 |
+
"nbconvert": {
|
665 |
+
"hashes": [
|
666 |
+
"sha256:495638c5e06005f4a5ce828d8a81d28e34f95c20f4384d5d7a22254b443836e7",
|
667 |
+
"sha256:a42c3ac137c64f70cbe4d763111bf358641ea53b37a01a5c202ed86374af5234"
|
668 |
+
],
|
669 |
+
"markers": "python_version >= '3.7'",
|
670 |
+
"version": "==7.2.9"
|
671 |
+
},
|
672 |
+
"nbformat": {
|
673 |
+
"hashes": [
|
674 |
+
"sha256:22a98a6516ca216002b0a34591af5bcb8072ca6c63910baffc901cfa07fefbf0",
|
675 |
+
"sha256:4b021fca24d3a747bf4e626694033d792d594705829e5e35b14ee3369f9f6477"
|
676 |
+
],
|
677 |
+
"markers": "python_version >= '3.7'",
|
678 |
+
"version": "==5.7.3"
|
679 |
+
},
|
680 |
+
"nest-asyncio": {
|
681 |
+
"hashes": [
|
682 |
+
"sha256:b9a953fb40dceaa587d109609098db21900182b16440652454a146cffb06e8b8",
|
683 |
+
"sha256:d267cc1ff794403f7df692964d1d2a3fa9418ffea2a3f6859a439ff482fef290"
|
684 |
+
],
|
685 |
+
"markers": "python_version >= '3.5'",
|
686 |
+
"version": "==1.5.6"
|
687 |
+
},
|
688 |
+
"notebook": {
|
689 |
+
"hashes": [
|
690 |
+
"sha256:50a334ad9d60b30cb759405168ef6fc3d60350ab5439fb1631544bb09dcb2cce",
|
691 |
+
"sha256:b12bee3292211d85dd7e588a790ddce30cb3e8fbcfa1e803522a207f60819e05"
|
692 |
+
],
|
693 |
+
"markers": "python_version >= '3.7'",
|
694 |
+
"version": "==6.5.3"
|
695 |
+
},
|
696 |
+
"notebook-shim": {
|
697 |
+
"hashes": [
|
698 |
+
"sha256:090e0baf9a5582ff59b607af523ca2db68ff216da0c69956b62cab2ef4fc9c3f",
|
699 |
+
"sha256:9c6c30f74c4fbea6fce55c1be58e7fd0409b1c681b075dcedceb005db5026949"
|
700 |
+
],
|
701 |
+
"markers": "python_version >= '3.7'",
|
702 |
+
"version": "==0.2.2"
|
703 |
+
},
|
704 |
+
"numpy": {
|
705 |
+
"hashes": [
|
706 |
+
"sha256:003a9f530e880cb2cd177cba1af7220b9aa42def9c4afc2a2fc3ee6be7eb2b22",
|
707 |
+
"sha256:150947adbdfeceec4e5926d956a06865c1c690f2fd902efede4ca6fe2e657c3f",
|
708 |
+
"sha256:2620e8592136e073bd12ee4536149380695fbe9ebeae845b81237f986479ffc9",
|
709 |
+
"sha256:2eabd64ddb96a1239791da78fa5f4e1693ae2dadc82a76bc76a14cbb2b966e96",
|
710 |
+
"sha256:4173bde9fa2a005c2c6e2ea8ac1618e2ed2c1c6ec8a7657237854d42094123a0",
|
711 |
+
"sha256:4199e7cfc307a778f72d293372736223e39ec9ac096ff0a2e64853b866a8e18a",
|
712 |
+
"sha256:4cecaed30dc14123020f77b03601559fff3e6cd0c048f8b5289f4eeabb0eb281",
|
713 |
+
"sha256:557d42778a6869c2162deb40ad82612645e21d79e11c1dc62c6e82a2220ffb04",
|
714 |
+
"sha256:63e45511ee4d9d976637d11e6c9864eae50e12dc9598f531c035265991910468",
|
715 |
+
"sha256:6524630f71631be2dabe0c541e7675db82651eb998496bbe16bc4f77f0772253",
|
716 |
+
"sha256:76807b4063f0002c8532cfeac47a3068a69561e9c8715efdad3c642eb27c0756",
|
717 |
+
"sha256:7de8fdde0003f4294655aa5d5f0a89c26b9f22c0a58790c38fae1ed392d44a5a",
|
718 |
+
"sha256:889b2cc88b837d86eda1b17008ebeb679d82875022200c6e8e4ce6cf549b7acb",
|
719 |
+
"sha256:92011118955724465fb6853def593cf397b4a1367495e0b59a7e69d40c4eb71d",
|
720 |
+
"sha256:97cf27e51fa078078c649a51d7ade3c92d9e709ba2bfb97493007103c741f1d0",
|
721 |
+
"sha256:9a23f8440561a633204a67fb44617ce2a299beecf3295f0d13c495518908e910",
|
722 |
+
"sha256:a51725a815a6188c662fb66fb32077709a9ca38053f0274640293a14fdd22978",
|
723 |
+
"sha256:a77d3e1163a7770164404607b7ba3967fb49b24782a6ef85d9b5f54126cc39e5",
|
724 |
+
"sha256:adbdce121896fd3a17a77ab0b0b5eedf05a9834a18699db6829a64e1dfccca7f",
|
725 |
+
"sha256:c29e6bd0ec49a44d7690ecb623a8eac5ab8a923bce0bea6293953992edf3a76a",
|
726 |
+
"sha256:c72a6b2f4af1adfe193f7beb91ddf708ff867a3f977ef2ec53c0ffb8283ab9f5",
|
727 |
+
"sha256:d0a2db9d20117bf523dde15858398e7c0858aadca7c0f088ac0d6edd360e9ad2",
|
728 |
+
"sha256:e3ab5d32784e843fc0dd3ab6dcafc67ef806e6b6828dc6af2f689be0eb4d781d",
|
729 |
+
"sha256:e428c4fbfa085f947b536706a2fc349245d7baa8334f0c5723c56a10595f9b95",
|
730 |
+
"sha256:e8d2859428712785e8a8b7d2b3ef0a1d1565892367b32f915c4a4df44d0e64f5",
|
731 |
+
"sha256:eef70b4fc1e872ebddc38cddacc87c19a3709c0e3e5d20bf3954c147b1dd941d",
|
732 |
+
"sha256:f64bb98ac59b3ea3bf74b02f13836eb2e24e48e0ab0145bbda646295769bd780",
|
733 |
+
"sha256:f9006288bcf4895917d02583cf3411f98631275bc67cce355a7f39f8c14338fa"
|
734 |
+
],
|
735 |
+
"index": "pypi",
|
736 |
+
"version": "==1.24.2"
|
737 |
+
},
|
738 |
+
"packaging": {
|
739 |
+
"hashes": [
|
740 |
+
"sha256:714ac14496c3e68c99c29b00845f7a2b85f3bb6f1078fd9f72fd20f0570002b2",
|
741 |
+
"sha256:b6ad297f8907de0fa2fe1ccbd26fdaf387f5f47c7275fedf8cce89f99446cf97"
|
742 |
+
],
|
743 |
+
"markers": "python_version >= '3.7'",
|
744 |
+
"version": "==23.0"
|
745 |
+
},
|
746 |
+
"pandas": {
|
747 |
+
"hashes": [
|
748 |
+
"sha256:14e45300521902689a81f3f41386dc86f19b8ba8dd5ac5a3c7010ef8d2932813",
|
749 |
+
"sha256:26d9c71772c7afb9d5046e6e9cf42d83dd147b5cf5bcb9d97252077118543792",
|
750 |
+
"sha256:3749077d86e3a2f0ed51367f30bf5b82e131cc0f14260c4d3e499186fccc4406",
|
751 |
+
"sha256:41179ce559943d83a9b4bbacb736b04c928b095b5f25dd2b7389eda08f46f373",
|
752 |
+
"sha256:478ff646ca42b20376e4ed3fa2e8d7341e8a63105586efe54fa2508ee087f328",
|
753 |
+
"sha256:50869a35cbb0f2e0cd5ec04b191e7b12ed688874bd05dd777c19b28cbea90996",
|
754 |
+
"sha256:565fa34a5434d38e9d250af3c12ff931abaf88050551d9fbcdfafca50d62babf",
|
755 |
+
"sha256:5f2b952406a1588ad4cad5b3f55f520e82e902388a6d5a4a91baa8d38d23c7f6",
|
756 |
+
"sha256:5fbcb19d6fceb9e946b3e23258757c7b225ba450990d9ed63ccceeb8cae609f7",
|
757 |
+
"sha256:6973549c01ca91ec96199e940495219c887ea815b2083722821f1d7abfa2b4dc",
|
758 |
+
"sha256:74a3fd7e5a7ec052f183273dc7b0acd3a863edf7520f5d3a1765c04ffdb3b0b1",
|
759 |
+
"sha256:7a0a56cef15fd1586726dace5616db75ebcfec9179a3a55e78f72c5639fa2a23",
|
760 |
+
"sha256:7cec0bee9f294e5de5bbfc14d0573f65526071029d036b753ee6507d2a21480a",
|
761 |
+
"sha256:87bd9c03da1ac870a6d2c8902a0e1fd4267ca00f13bc494c9e5a9020920e1d51",
|
762 |
+
"sha256:972d8a45395f2a2d26733eb8d0f629b2f90bebe8e8eddbb8829b180c09639572",
|
763 |
+
"sha256:9842b6f4b8479e41968eced654487258ed81df7d1c9b7b870ceea24ed9459b31",
|
764 |
+
"sha256:9f69c4029613de47816b1bb30ff5ac778686688751a5e9c99ad8c7031f6508e5",
|
765 |
+
"sha256:a50d9a4336a9621cab7b8eb3fb11adb82de58f9b91d84c2cd526576b881a0c5a",
|
766 |
+
"sha256:bc4c368f42b551bf72fac35c5128963a171b40dce866fb066540eeaf46faa003",
|
767 |
+
"sha256:c39a8da13cede5adcd3be1182883aea1c925476f4e84b2807a46e2775306305d",
|
768 |
+
"sha256:c3ac844a0fe00bfaeb2c9b51ab1424e5c8744f89860b138434a363b1f620f354",
|
769 |
+
"sha256:c4c00e0b0597c8e4f59e8d461f797e5d70b4d025880516a8261b2817c47759ee",
|
770 |
+
"sha256:c74a62747864ed568f5a82a49a23a8d7fe171d0c69038b38cedf0976831296fa",
|
771 |
+
"sha256:dd05f7783b3274aa206a1af06f0ceed3f9b412cf665b7247eacd83be41cf7bf0",
|
772 |
+
"sha256:dfd681c5dc216037e0b0a2c821f5ed99ba9f03ebcf119c7dac0e9a7b960b9ec9",
|
773 |
+
"sha256:e474390e60ed609cec869b0da796ad94f420bb057d86784191eefc62b65819ae",
|
774 |
+
"sha256:f76d097d12c82a535fda9dfe5e8dd4127952b45fea9b0276cb30cca5ea313fbc"
|
775 |
+
],
|
776 |
+
"index": "pypi",
|
777 |
+
"version": "==1.5.3"
|
778 |
+
},
|
779 |
+
"pandocfilters": {
|
780 |
+
"hashes": [
|
781 |
+
"sha256:0b679503337d233b4339a817bfc8c50064e2eff681314376a47cb582305a7a38",
|
782 |
+
"sha256:33aae3f25fd1a026079f5d27bdd52496f0e0803b3469282162bafdcbdf6ef14f"
|
783 |
+
],
|
784 |
+
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
|
785 |
+
"version": "==1.5.0"
|
786 |
+
},
|
787 |
+
"parso": {
|
788 |
+
"hashes": [
|
789 |
+
"sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0",
|
790 |
+
"sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"
|
791 |
+
],
|
792 |
+
"markers": "python_version >= '3.6'",
|
793 |
+
"version": "==0.8.3"
|
794 |
+
},
|
795 |
+
"pathspec": {
|
796 |
+
"hashes": [
|
797 |
+
"sha256:3a66eb970cbac598f9e5ccb5b2cf58930cd8e3ed86d393d541eaf2d8b1705229",
|
798 |
+
"sha256:64d338d4e0914e91c1792321e6907b5a593f1ab1851de7fc269557a21b30ebbc"
|
799 |
+
],
|
800 |
+
"markers": "python_version >= '3.7'",
|
801 |
+
"version": "==0.11.0"
|
802 |
+
},
|
803 |
+
"pexpect": {
|
804 |
+
"hashes": [
|
805 |
+
"sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937",
|
806 |
+
"sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c"
|
807 |
+
],
|
808 |
+
"markers": "sys_platform != 'win32'",
|
809 |
+
"version": "==4.8.0"
|
810 |
+
},
|
811 |
+
"pickleshare": {
|
812 |
+
"hashes": [
|
813 |
+
"sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca",
|
814 |
+
"sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"
|
815 |
+
],
|
816 |
+
"version": "==0.7.5"
|
817 |
+
},
|
818 |
+
"platformdirs": {
|
819 |
+
"hashes": [
|
820 |
+
"sha256:13b08a53ed71021350c9e300d4ea8668438fb0046ab3937ac9a29913a1a1350a",
|
821 |
+
"sha256:accc3665857288317f32c7bebb5a8e482ba717b474f3fc1d18ca7f9214be0cef"
|
822 |
+
],
|
823 |
+
"markers": "python_version >= '3.7'",
|
824 |
+
"version": "==3.1.0"
|
825 |
+
},
|
826 |
+
"prometheus-client": {
|
827 |
+
"hashes": [
|
828 |
+
"sha256:0836af6eb2c8f4fed712b2f279f6c0a8bbab29f9f4aa15276b91c7cb0d1616ab",
|
829 |
+
"sha256:a03e35b359f14dd1630898543e2120addfdeacd1a6069c1367ae90fd93ad3f48"
|
830 |
+
],
|
831 |
+
"markers": "python_version >= '3.6'",
|
832 |
+
"version": "==0.16.0"
|
833 |
+
},
|
834 |
+
"prompt-toolkit": {
|
835 |
+
"hashes": [
|
836 |
+
"sha256:23ac5d50538a9a38c8bde05fecb47d0b403ecd0662857a86f886f798563d5b9b",
|
837 |
+
"sha256:45ea77a2f7c60418850331366c81cf6b5b9cf4c7fd34616f733c5427e6abbb1f"
|
838 |
+
],
|
839 |
+
"markers": "python_full_version >= '3.7.0'",
|
840 |
+
"version": "==3.0.38"
|
841 |
+
},
|
842 |
+
"psutil": {
|
843 |
+
"hashes": [
|
844 |
+
"sha256:149555f59a69b33f056ba1c4eb22bb7bf24332ce631c44a319cec09f876aaeff",
|
845 |
+
"sha256:16653106f3b59386ffe10e0bad3bb6299e169d5327d3f187614b1cb8f24cf2e1",
|
846 |
+
"sha256:3d7f9739eb435d4b1338944abe23f49584bde5395f27487d2ee25ad9a8774a62",
|
847 |
+
"sha256:3ff89f9b835100a825b14c2808a106b6fdcc4b15483141482a12c725e7f78549",
|
848 |
+
"sha256:54c0d3d8e0078b7666984e11b12b88af2db11d11249a8ac8920dd5ef68a66e08",
|
849 |
+
"sha256:54d5b184728298f2ca8567bf83c422b706200bcbbfafdc06718264f9393cfeb7",
|
850 |
+
"sha256:6001c809253a29599bc0dfd5179d9f8a5779f9dffea1da0f13c53ee568115e1e",
|
851 |
+
"sha256:68908971daf802203f3d37e78d3f8831b6d1014864d7a85937941bb35f09aefe",
|
852 |
+
"sha256:6b92c532979bafc2df23ddc785ed116fced1f492ad90a6830cf24f4d1ea27d24",
|
853 |
+
"sha256:852dd5d9f8a47169fe62fd4a971aa07859476c2ba22c2254d4a1baa4e10b95ad",
|
854 |
+
"sha256:9120cd39dca5c5e1c54b59a41d205023d436799b1c8c4d3ff71af18535728e94",
|
855 |
+
"sha256:c1ca331af862803a42677c120aff8a814a804e09832f166f226bfd22b56feee8",
|
856 |
+
"sha256:efeae04f9516907be44904cc7ce08defb6b665128992a56957abc9b61dca94b7",
|
857 |
+
"sha256:fd8522436a6ada7b4aad6638662966de0d61d241cb821239b2ae7013d41a43d4"
|
858 |
+
],
|
859 |
+
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
|
860 |
+
"version": "==5.9.4"
|
861 |
+
},
|
862 |
+
"ptyprocess": {
|
863 |
+
"hashes": [
|
864 |
+
"sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35",
|
865 |
+
"sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"
|
866 |
+
],
|
867 |
+
"version": "==0.7.0"
|
868 |
+
},
|
869 |
+
"pure-eval": {
|
870 |
+
"hashes": [
|
871 |
+
"sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350",
|
872 |
+
"sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"
|
873 |
+
],
|
874 |
+
"version": "==0.2.2"
|
875 |
+
},
|
876 |
+
"pycparser": {
|
877 |
+
"hashes": [
|
878 |
+
"sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9",
|
879 |
+
"sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"
|
880 |
+
],
|
881 |
+
"version": "==2.21"
|
882 |
+
},
|
883 |
+
"pygments": {
|
884 |
+
"hashes": [
|
885 |
+
"sha256:b3ed06a9e8ac9a9aae5a6f5dbe78a8a58655d17b43b93c078f094ddc476ae297",
|
886 |
+
"sha256:fa7bd7bd2771287c0de303af8bfdfc731f51bd2c6a47ab69d117138893b82717"
|
887 |
+
],
|
888 |
+
"markers": "python_version >= '3.6'",
|
889 |
+
"version": "==2.14.0"
|
890 |
+
},
|
891 |
+
"pyrsistent": {
|
892 |
+
"hashes": [
|
893 |
+
"sha256:016ad1afadf318eb7911baa24b049909f7f3bb2c5b1ed7b6a8f21db21ea3faa8",
|
894 |
+
"sha256:1a2994773706bbb4995c31a97bc94f1418314923bd1048c6d964837040376440",
|
895 |
+
"sha256:20460ac0ea439a3e79caa1dbd560344b64ed75e85d8703943e0b66c2a6150e4a",
|
896 |
+
"sha256:3311cb4237a341aa52ab8448c27e3a9931e2ee09561ad150ba94e4cfd3fc888c",
|
897 |
+
"sha256:3a8cb235fa6d3fd7aae6a4f1429bbb1fec1577d978098da1252f0489937786f3",
|
898 |
+
"sha256:3ab2204234c0ecd8b9368dbd6a53e83c3d4f3cab10ecaf6d0e772f456c442393",
|
899 |
+
"sha256:42ac0b2f44607eb92ae88609eda931a4f0dfa03038c44c772e07f43e738bcac9",
|
900 |
+
"sha256:49c32f216c17148695ca0e02a5c521e28a4ee6c5089f97e34fe24163113722da",
|
901 |
+
"sha256:4b774f9288dda8d425adb6544e5903f1fb6c273ab3128a355c6b972b7df39dcf",
|
902 |
+
"sha256:4c18264cb84b5e68e7085a43723f9e4c1fd1d935ab240ce02c0324a8e01ccb64",
|
903 |
+
"sha256:5a474fb80f5e0d6c9394d8db0fc19e90fa540b82ee52dba7d246a7791712f74a",
|
904 |
+
"sha256:64220c429e42a7150f4bfd280f6f4bb2850f95956bde93c6fda1b70507af6ef3",
|
905 |
+
"sha256:878433581fc23e906d947a6814336eee031a00e6defba224234169ae3d3d6a98",
|
906 |
+
"sha256:99abb85579e2165bd8522f0c0138864da97847875ecbd45f3e7e2af569bfc6f2",
|
907 |
+
"sha256:a2471f3f8693101975b1ff85ffd19bb7ca7dd7c38f8a81701f67d6b4f97b87d8",
|
908 |
+
"sha256:aeda827381f5e5d65cced3024126529ddc4289d944f75e090572c77ceb19adbf",
|
909 |
+
"sha256:b735e538f74ec31378f5a1e3886a26d2ca6351106b4dfde376a26fc32a044edc",
|
910 |
+
"sha256:c147257a92374fde8498491f53ffa8f4822cd70c0d85037e09028e478cababb7",
|
911 |
+
"sha256:c4db1bd596fefd66b296a3d5d943c94f4fac5bcd13e99bffe2ba6a759d959a28",
|
912 |
+
"sha256:c74bed51f9b41c48366a286395c67f4e894374306b197e62810e0fdaf2364da2",
|
913 |
+
"sha256:c9bb60a40a0ab9aba40a59f68214eed5a29c6274c83b2cc206a359c4a89fa41b",
|
914 |
+
"sha256:cc5d149f31706762c1f8bda2e8c4f8fead6e80312e3692619a75301d3dbb819a",
|
915 |
+
"sha256:ccf0d6bd208f8111179f0c26fdf84ed7c3891982f2edaeae7422575f47e66b64",
|
916 |
+
"sha256:e42296a09e83028b3476f7073fcb69ffebac0e66dbbfd1bd847d61f74db30f19",
|
917 |
+
"sha256:e8f2b814a3dc6225964fa03d8582c6e0b6650d68a232df41e3cc1b66a5d2f8d1",
|
918 |
+
"sha256:f0774bf48631f3a20471dd7c5989657b639fd2d285b861237ea9e82c36a415a9",
|
919 |
+
"sha256:f0e7c4b2f77593871e918be000b96c8107da48444d57005b6a6bc61fb4331b2c"
|
920 |
+
],
|
921 |
+
"markers": "python_version >= '3.7'",
|
922 |
+
"version": "==0.19.3"
|
923 |
+
},
|
924 |
+
"python-dateutil": {
|
925 |
+
"hashes": [
|
926 |
+
"sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86",
|
927 |
+
"sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"
|
928 |
+
],
|
929 |
+
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
|
930 |
+
"version": "==2.8.2"
|
931 |
+
},
|
932 |
+
"python-json-logger": {
|
933 |
+
"hashes": [
|
934 |
+
"sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c",
|
935 |
+
"sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"
|
936 |
+
],
|
937 |
+
"markers": "python_version >= '3.6'",
|
938 |
+
"version": "==2.0.7"
|
939 |
+
},
|
940 |
+
"pytz": {
|
941 |
+
"hashes": [
|
942 |
+
"sha256:01a0681c4b9684a28304615eba55d1ab31ae00bf68ec157ec3708a8182dbbcd0",
|
943 |
+
"sha256:78f4f37d8198e0627c5f1143240bb0206b8691d8d7ac6d78fee88b78733f8c4a"
|
944 |
+
],
|
945 |
+
"version": "==2022.7.1"
|
946 |
+
},
|
947 |
+
"pyyaml": {
|
948 |
+
"hashes": [
|
949 |
+
"sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf",
|
950 |
+
"sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293",
|
951 |
+
"sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b",
|
952 |
+
"sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57",
|
953 |
+
"sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b",
|
954 |
+
"sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4",
|
955 |
+
"sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07",
|
956 |
+
"sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba",
|
957 |
+
"sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9",
|
958 |
+
"sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287",
|
959 |
+
"sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513",
|
960 |
+
"sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0",
|
961 |
+
"sha256:432557aa2c09802be39460360ddffd48156e30721f5e8d917f01d31694216782",
|
962 |
+
"sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0",
|
963 |
+
"sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92",
|
964 |
+
"sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f",
|
965 |
+
"sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2",
|
966 |
+
"sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc",
|
967 |
+
"sha256:81957921f441d50af23654aa6c5e5eaf9b06aba7f0a19c18a538dc7ef291c5a1",
|
968 |
+
"sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c",
|
969 |
+
"sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86",
|
970 |
+
"sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4",
|
971 |
+
"sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c",
|
972 |
+
"sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34",
|
973 |
+
"sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b",
|
974 |
+
"sha256:afa17f5bc4d1b10afd4466fd3a44dc0e245382deca5b3c353d8b757f9e3ecb8d",
|
975 |
+
"sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c",
|
976 |
+
"sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb",
|
977 |
+
"sha256:bfaef573a63ba8923503d27530362590ff4f576c626d86a9fed95822a8255fd7",
|
978 |
+
"sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737",
|
979 |
+
"sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3",
|
980 |
+
"sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d",
|
981 |
+
"sha256:d4b0ba9512519522b118090257be113b9468d804b19d63c71dbcf4a48fa32358",
|
982 |
+
"sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53",
|
983 |
+
"sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78",
|
984 |
+
"sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803",
|
985 |
+
"sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a",
|
986 |
+
"sha256:dbad0e9d368bb989f4515da330b88a057617d16b6a8245084f1b05400f24609f",
|
987 |
+
"sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174",
|
988 |
+
"sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"
|
989 |
+
],
|
990 |
+
"markers": "python_version >= '3.6'",
|
991 |
+
"version": "==6.0"
|
992 |
+
},
|
993 |
+
"pyzmq": {
|
994 |
+
"hashes": [
|
995 |
+
"sha256:00c94fd4c9dd3c95aace0c629a7fa713627a5c80c1819326b642adf6c4b8e2a2",
|
996 |
+
"sha256:01d53958c787cfea34091fcb8ef36003dbb7913b8e9f8f62a0715234ebc98b70",
|
997 |
+
"sha256:0282bba9aee6e0346aa27d6c69b5f7df72b5a964c91958fc9e0c62dcae5fdcdc",
|
998 |
+
"sha256:02f5cb60a7da1edd5591a15efa654ffe2303297a41e1b40c3c8942f8f11fc17c",
|
999 |
+
"sha256:0645b5a2d2a06fd8eb738018490c514907f7488bf9359c6ee9d92f62e844b76f",
|
1000 |
+
"sha256:0a154ef810d44f9d28868be04641f837374a64e7449df98d9208e76c260c7ef1",
|
1001 |
+
"sha256:0a90b2480a26aef7c13cff18703ba8d68e181facb40f78873df79e6d42c1facc",
|
1002 |
+
"sha256:0e8d00228db627ddd1b418c7afd81820b38575f237128c9650365f2dd6ac3443",
|
1003 |
+
"sha256:17e1cb97d573ea84d7cd97188b42ca6f611ab3ee600f6a75041294ede58e3d20",
|
1004 |
+
"sha256:183e18742be3621acf8908903f689ec520aee3f08449bfd29f583010ca33022b",
|
1005 |
+
"sha256:1f6116991568aac48b94d6d8aaed6157d407942ea385335a6ed313692777fb9d",
|
1006 |
+
"sha256:20638121b0bdc80777ce0ec8c1f14f1ffec0697a1f88f0b564fa4a23078791c4",
|
1007 |
+
"sha256:2754fa68da08a854f4816e05160137fa938a2347276471103d31e04bcee5365c",
|
1008 |
+
"sha256:28bcb2e66224a7ac2843eb632e4109d6b161479e7a2baf24e37210461485b4f1",
|
1009 |
+
"sha256:293a7c2128690f496057f1f1eb6074f8746058d13588389981089ec45d8fdc77",
|
1010 |
+
"sha256:2a73af6504e0d2805e926abf136ebf536735a13c22f709be7113c2ec65b4bec3",
|
1011 |
+
"sha256:2d05d904f03ddf1e0d83d97341354dfe52244a619b5a1440a5f47a5b3451e84e",
|
1012 |
+
"sha256:2e7b87638ee30ab13230e37ce5331b3e730b1e0dda30120b9eeec3540ed292c8",
|
1013 |
+
"sha256:3100dddcada66ec5940ed6391ebf9d003cc3ede3d320748b2737553019f58230",
|
1014 |
+
"sha256:31e523d067ce44a04e876bed3ff9ea1ff8d1b6636d16e5fcace9d22f8c564369",
|
1015 |
+
"sha256:3594c0ff604e685d7e907860b61d0e10e46c74a9ffca168f6e9e50ea934ee440",
|
1016 |
+
"sha256:3670e8c5644768f214a3b598fe46378a4a6f096d5fb82a67dfd3440028460565",
|
1017 |
+
"sha256:4046d03100aca266e70d54a35694cb35d6654cfbef633e848b3c4a8d64b9d187",
|
1018 |
+
"sha256:4725412e27612f0d7d7c2f794d89807ad0227c2fc01dd6146b39ada49c748ef9",
|
1019 |
+
"sha256:484c2c4ee02c1edc07039f42130bd16e804b1fe81c4f428e0042e03967f40c20",
|
1020 |
+
"sha256:487305c2a011fdcf3db1f24e8814bb76d23bc4d2f46e145bc80316a59a9aa07d",
|
1021 |
+
"sha256:4a1bc30f0c18444d51e9b0d0dd39e3a4e7c53ee74190bebef238cd58de577ea9",
|
1022 |
+
"sha256:4c25c95416133942280faaf068d0fddfd642b927fb28aaf4ab201a738e597c1e",
|
1023 |
+
"sha256:4cbb885f347eba7ab7681c450dee5b14aed9f153eec224ec0c3f299273d9241f",
|
1024 |
+
"sha256:4d3d604fe0a67afd1aff906e54da557a5203368a99dcc50a70eef374f1d2abef",
|
1025 |
+
"sha256:4e295f7928a31ae0f657e848c5045ba6d693fe8921205f408ca3804b1b236968",
|
1026 |
+
"sha256:5049e75cc99db65754a3da5f079230fb8889230cf09462ec972d884d1704a3ed",
|
1027 |
+
"sha256:5050f5c50b58a6e38ccaf9263a356f74ef1040f5ca4030225d1cb1a858c5b7b6",
|
1028 |
+
"sha256:526f884a27e8bba62fe1f4e07c62be2cfe492b6d432a8fdc4210397f8cf15331",
|
1029 |
+
"sha256:531866c491aee5a1e967c286cfa470dffac1e2a203b1afda52d62b58782651e9",
|
1030 |
+
"sha256:5605621f2181f20b71f13f698944deb26a0a71af4aaf435b34dd90146092d530",
|
1031 |
+
"sha256:58fc3ad5e1cfd2e6d24741fbb1e216b388115d31b0ca6670f894187f280b6ba6",
|
1032 |
+
"sha256:60ecbfe7669d3808ffa8a7dd1487d6eb8a4015b07235e3b723d4b2a2d4de7203",
|
1033 |
+
"sha256:610d2d112acd4e5501fac31010064a6c6efd716ceb968e443cae0059eb7b86de",
|
1034 |
+
"sha256:6136bfb0e5a9cf8c60c6ac763eb21f82940a77e6758ea53516c8c7074f4ff948",
|
1035 |
+
"sha256:62b9e80890c0d2408eb42d5d7e1fc62a5ce71be3288684788f74cf3e59ffd6e2",
|
1036 |
+
"sha256:656281d496aaf9ca4fd4cea84e6d893e3361057c4707bd38618f7e811759103c",
|
1037 |
+
"sha256:66509c48f7446b640eeae24b60c9c1461799a27b1b0754e438582e36b5af3315",
|
1038 |
+
"sha256:6bf3842af37af43fa953e96074ebbb5315f6a297198f805d019d788a1021dbc8",
|
1039 |
+
"sha256:731b208bc9412deeb553c9519dca47136b5a01ca66667cafd8733211941b17e4",
|
1040 |
+
"sha256:75243e422e85a62f0ab7953dc315452a56b2c6a7e7d1a3c3109ac3cc57ed6b47",
|
1041 |
+
"sha256:7877264aa851c19404b1bb9dbe6eed21ea0c13698be1eda3784aab3036d1c861",
|
1042 |
+
"sha256:81f99fb1224d36eb91557afec8cdc2264e856f3464500b55749020ce4c848ef2",
|
1043 |
+
"sha256:8539216173135e9e89f6b1cc392e74e6b935b91e8c76106cf50e7a02ab02efe5",
|
1044 |
+
"sha256:85456f0d8f3268eecd63dede3b99d5bd8d3b306310c37d4c15141111d22baeaf",
|
1045 |
+
"sha256:866eabf7c1315ef2e93e34230db7cbf672e0d7c626b37c11f7e870c8612c3dcc",
|
1046 |
+
"sha256:926236ca003aec70574754f39703528947211a406f5c6c8b3e50eca04a9e87fc",
|
1047 |
+
"sha256:930e6ad4f2eaac31a3d0c2130619d25db754b267487ebc186c6ad18af2a74018",
|
1048 |
+
"sha256:94f0a7289d0f5c80807c37ebb404205e7deb737e8763eb176f4770839ee2a287",
|
1049 |
+
"sha256:9a2d5e419bd39a1edb6cdd326d831f0120ddb9b1ff397e7d73541bf393294973",
|
1050 |
+
"sha256:9ca6db34b26c4d3e9b0728841ec9aa39484eee272caa97972ec8c8e231b20c7e",
|
1051 |
+
"sha256:9f72ea279b2941a5203e935a4588b9ba8a48aeb9a926d9dfa1986278bd362cb8",
|
1052 |
+
"sha256:a0e7ef9ac807db50b4eb6f534c5dcc22f998f5dae920cc28873d2c1d080a4fc9",
|
1053 |
+
"sha256:a1cd4a95f176cdc0ee0a82d49d5830f13ae6015d89decbf834c273bc33eeb3d3",
|
1054 |
+
"sha256:a9c464cc508177c09a5a6122b67f978f20e2954a21362bf095a0da4647e3e908",
|
1055 |
+
"sha256:ac97e7d647d5519bcef48dd8d3d331f72975afa5c4496c95f6e854686f45e2d9",
|
1056 |
+
"sha256:af1fbfb7ad6ac0009ccee33c90a1d303431c7fb594335eb97760988727a37577",
|
1057 |
+
"sha256:b055a1cddf8035966ad13aa51edae5dc8f1bba0b5d5e06f7a843d8b83dc9b66b",
|
1058 |
+
"sha256:b6f75b4b8574f3a8a0d6b4b52606fc75b82cb4391471be48ab0b8677c82f9ed4",
|
1059 |
+
"sha256:b90bb8dfbbd138558f1f284fecfe328f7653616ff9a972433a00711d9475d1a9",
|
1060 |
+
"sha256:be05504af0619d1cffa500af1e0ede69fb683f301003851f5993b5247cc2c576",
|
1061 |
+
"sha256:c21a5f4e54a807df5afdef52b6d24ec1580153a6bcf0607f70a6e1d9fa74c5c3",
|
1062 |
+
"sha256:c48f257da280b3be6c94e05bd575eddb1373419dbb1a72c3ce64e88f29d1cd6d",
|
1063 |
+
"sha256:cac602e02341eaaf4edfd3e29bd3fdef672e61d4e6dfe5c1d065172aee00acee",
|
1064 |
+
"sha256:ccb3e1a863222afdbda42b7ca8ac8569959593d7abd44f5a709177d6fa27d266",
|
1065 |
+
"sha256:e1081d7030a1229c8ff90120346fb7599b54f552e98fcea5170544e7c6725aab",
|
1066 |
+
"sha256:e14df47c1265356715d3d66e90282a645ebc077b70b3806cf47efcb7d1d630cb",
|
1067 |
+
"sha256:e4bba04ea779a3d7ef25a821bb63fd0939142c88e7813e5bd9c6265a20c523a2",
|
1068 |
+
"sha256:e99629a976809fe102ef73e856cf4b2660acd82a412a51e80ba2215e523dfd0a",
|
1069 |
+
"sha256:f330a1a2c7f89fd4b0aa4dcb7bf50243bf1c8da9a2f1efc31daf57a2046b31f2",
|
1070 |
+
"sha256:f3f96d452e9580cb961ece2e5a788e64abaecb1232a80e61deffb28e105ff84a",
|
1071 |
+
"sha256:fc7c1421c5b1c916acf3128bf3cc7ea7f5018b58c69a6866d70c14190e600ce9"
|
1072 |
+
],
|
1073 |
+
"markers": "python_version >= '3.6'",
|
1074 |
+
"version": "==25.0.0"
|
1075 |
+
},
|
1076 |
+
"requests": {
|
1077 |
+
"hashes": [
|
1078 |
+
"sha256:64299f4909223da747622c030b781c0d7811e359c37124b4bd368fb8c6518baa",
|
1079 |
+
"sha256:98b1b2782e3c6c4904938b84c0eb932721069dfdb9134313beff7c83c2df24bf"
|
1080 |
+
],
|
1081 |
+
"markers": "python_version >= '3.7' and python_version < '4'",
|
1082 |
+
"version": "==2.28.2"
|
1083 |
+
},
|
1084 |
+
"rfc3339-validator": {
|
1085 |
+
"hashes": [
|
1086 |
+
"sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b",
|
1087 |
+
"sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"
|
1088 |
+
],
|
1089 |
+
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'",
|
1090 |
+
"version": "==0.1.4"
|
1091 |
+
},
|
1092 |
+
"rfc3986-validator": {
|
1093 |
+
"hashes": [
|
1094 |
+
"sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9",
|
1095 |
+
"sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"
|
1096 |
+
],
|
1097 |
+
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'",
|
1098 |
+
"version": "==0.1.1"
|
1099 |
+
},
|
1100 |
+
"scikit-learn": {
|
1101 |
+
"hashes": [
|
1102 |
+
"sha256:065e9673e24e0dc5113e2dd2b4ca30c9d8aa2fa90f4c0597241c93b63130d233",
|
1103 |
+
"sha256:2dd3ffd3950e3d6c0c0ef9033a9b9b32d910c61bd06cb8206303fb4514b88a49",
|
1104 |
+
"sha256:2e2642baa0ad1e8f8188917423dd73994bf25429f8893ddbe115be3ca3183584",
|
1105 |
+
"sha256:44b47a305190c28dd8dd73fc9445f802b6ea716669cfc22ab1eb97b335d238b1",
|
1106 |
+
"sha256:6477eed40dbce190f9f9e9d0d37e020815825b300121307942ec2110302b66a3",
|
1107 |
+
"sha256:6fe83b676f407f00afa388dd1fdd49e5c6612e551ed84f3b1b182858f09e987d",
|
1108 |
+
"sha256:7d5312d9674bed14f73773d2acf15a3272639b981e60b72c9b190a0cffed5bad",
|
1109 |
+
"sha256:7f69313884e8eb311460cc2f28676d5e400bd929841a2c8eb8742ae78ebf7c20",
|
1110 |
+
"sha256:8156db41e1c39c69aa2d8599ab7577af53e9e5e7a57b0504e116cc73c39138dd",
|
1111 |
+
"sha256:8429aea30ec24e7a8c7ed8a3fa6213adf3814a6efbea09e16e0a0c71e1a1a3d7",
|
1112 |
+
"sha256:8b0670d4224a3c2d596fd572fb4fa673b2a0ccfb07152688ebd2ea0b8c61025c",
|
1113 |
+
"sha256:953236889928d104c2ef14027539f5f2609a47ebf716b8cbe4437e85dce42744",
|
1114 |
+
"sha256:99cc01184e347de485bf253d19fcb3b1a3fb0ee4cea5ee3c43ec0cc429b6d29f",
|
1115 |
+
"sha256:9c710ff9f9936ba8a3b74a455ccf0dcf59b230caa1e9ba0223773c490cab1e51",
|
1116 |
+
"sha256:ad66c3848c0a1ec13464b2a95d0a484fd5b02ce74268eaa7e0c697b904f31d6c",
|
1117 |
+
"sha256:bf036ea7ef66115e0d49655f16febfa547886deba20149555a41d28f56fd6d3c",
|
1118 |
+
"sha256:dfeaf8be72117eb61a164ea6fc8afb6dfe08c6f90365bde2dc16456e4bc8e45f",
|
1119 |
+
"sha256:e6e574db9914afcb4e11ade84fab084536a895ca60aadea3041e85b8ac963edb",
|
1120 |
+
"sha256:ea061bf0283bf9a9f36ea3c5d3231ba2176221bbd430abd2603b1c3b2ed85c89",
|
1121 |
+
"sha256:fe0aa1a7029ed3e1dcbf4a5bc675aa3b1bc468d9012ecf6c6f081251ca47f590",
|
1122 |
+
"sha256:fe175ee1dab589d2e1033657c5b6bec92a8a3b69103e3dd361b58014729975c3"
|
1123 |
+
],
|
1124 |
+
"index": "pypi",
|
1125 |
+
"version": "==1.2.2"
|
1126 |
+
},
|
1127 |
+
"scipy": {
|
1128 |
+
"hashes": [
|
1129 |
+
"sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415",
|
1130 |
+
"sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f",
|
1131 |
+
"sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd",
|
1132 |
+
"sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f",
|
1133 |
+
"sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d",
|
1134 |
+
"sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601",
|
1135 |
+
"sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5",
|
1136 |
+
"sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88",
|
1137 |
+
"sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f",
|
1138 |
+
"sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e",
|
1139 |
+
"sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2",
|
1140 |
+
"sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353",
|
1141 |
+
"sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35",
|
1142 |
+
"sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6",
|
1143 |
+
"sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea",
|
1144 |
+
"sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35",
|
1145 |
+
"sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1",
|
1146 |
+
"sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9",
|
1147 |
+
"sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5",
|
1148 |
+
"sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019",
|
1149 |
+
"sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1"
|
1150 |
+
],
|
1151 |
+
"markers": "python_version < '3.12' and python_version >= '3.8'",
|
1152 |
+
"version": "==1.10.1"
|
1153 |
+
},
|
1154 |
+
"send2trash": {
|
1155 |
+
"hashes": [
|
1156 |
+
"sha256:d2c24762fd3759860a0aff155e45871447ea58d2be6bdd39b5c8f966a0c99c2d",
|
1157 |
+
"sha256:f20eaadfdb517eaca5ce077640cb261c7d2698385a6a0f072a4a5447fd49fa08"
|
1158 |
+
],
|
1159 |
+
"version": "==1.8.0"
|
1160 |
+
},
|
1161 |
+
"six": {
|
1162 |
+
"hashes": [
|
1163 |
+
"sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926",
|
1164 |
+
"sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"
|
1165 |
+
],
|
1166 |
+
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
|
1167 |
+
"version": "==1.16.0"
|
1168 |
+
},
|
1169 |
+
"sniffio": {
|
1170 |
+
"hashes": [
|
1171 |
+
"sha256:e60305c5e5d314f5389259b7f22aaa33d8f7dee49763119234af3755c55b9101",
|
1172 |
+
"sha256:eecefdce1e5bbfb7ad2eeaabf7c1eeb404d7757c379bd1f7e5cce9d8bf425384"
|
1173 |
+
],
|
1174 |
+
"markers": "python_version >= '3.7'",
|
1175 |
+
"version": "==1.3.0"
|
1176 |
+
},
|
1177 |
+
"soupsieve": {
|
1178 |
+
"hashes": [
|
1179 |
+
"sha256:49e5368c2cda80ee7e84da9dbe3e110b70a4575f196efb74e51b94549d921955",
|
1180 |
+
"sha256:e28dba9ca6c7c00173e34e4ba57448f0688bb681b7c5e8bf4971daafc093d69a"
|
1181 |
+
],
|
1182 |
+
"markers": "python_version >= '3.7'",
|
1183 |
+
"version": "==2.4"
|
1184 |
+
},
|
1185 |
+
"stack-data": {
|
1186 |
+
"hashes": [
|
1187 |
+
"sha256:32d2dd0376772d01b6cb9fc996f3c8b57a357089dec328ed4b6553d037eaf815",
|
1188 |
+
"sha256:cbb2a53eb64e5785878201a97ed7c7b94883f48b87bfb0bbe8b623c74679e4a8"
|
1189 |
+
],
|
1190 |
+
"version": "==0.6.2"
|
1191 |
+
},
|
1192 |
+
"terminado": {
|
1193 |
+
"hashes": [
|
1194 |
+
"sha256:6ccbbcd3a4f8a25a5ec04991f39a0b8db52dfcd487ea0e578d977e6752380333",
|
1195 |
+
"sha256:8650d44334eba354dd591129ca3124a6ba42c3d5b70df5051b6921d506fdaeae"
|
1196 |
+
],
|
1197 |
+
"markers": "python_version >= '3.7'",
|
1198 |
+
"version": "==0.17.1"
|
1199 |
+
},
|
1200 |
+
"threadpoolctl": {
|
1201 |
+
"hashes": [
|
1202 |
+
"sha256:8b99adda265feb6773280df41eece7b2e6561b772d21ffd52e372f999024907b",
|
1203 |
+
"sha256:a335baacfaa4400ae1f0d8e3a58d6674d2f8828e3716bb2802c44955ad391380"
|
1204 |
+
],
|
1205 |
+
"markers": "python_version >= '3.6'",
|
1206 |
+
"version": "==3.1.0"
|
1207 |
+
},
|
1208 |
+
"tinycss2": {
|
1209 |
+
"hashes": [
|
1210 |
+
"sha256:2b80a96d41e7c3914b8cda8bc7f705a4d9c49275616e886103dd839dfc847847",
|
1211 |
+
"sha256:8cff3a8f066c2ec677c06dbc7b45619804a6938478d9d73c284b29d14ecb0627"
|
1212 |
+
],
|
1213 |
+
"markers": "python_version >= '3.7'",
|
1214 |
+
"version": "==1.2.1"
|
1215 |
+
},
|
1216 |
+
"tomli": {
|
1217 |
+
"hashes": [
|
1218 |
+
"sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc",
|
1219 |
+
"sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"
|
1220 |
+
],
|
1221 |
+
"markers": "python_version < '3.11'",
|
1222 |
+
"version": "==2.0.1"
|
1223 |
+
},
|
1224 |
+
"tornado": {
|
1225 |
+
"hashes": [
|
1226 |
+
"sha256:1d54d13ab8414ed44de07efecb97d4ef7c39f7438cf5e976ccd356bebb1b5fca",
|
1227 |
+
"sha256:20f638fd8cc85f3cbae3c732326e96addff0a15e22d80f049e00121651e82e72",
|
1228 |
+
"sha256:5c87076709343557ef8032934ce5f637dbb552efa7b21d08e89ae7619ed0eb23",
|
1229 |
+
"sha256:5f8c52d219d4995388119af7ccaa0bcec289535747620116a58d830e7c25d8a8",
|
1230 |
+
"sha256:6fdfabffd8dfcb6cf887428849d30cf19a3ea34c2c248461e1f7d718ad30b66b",
|
1231 |
+
"sha256:87dcafae3e884462f90c90ecc200defe5e580a7fbbb4365eda7c7c1eb809ebc9",
|
1232 |
+
"sha256:9b630419bde84ec666bfd7ea0a4cb2a8a651c2d5cccdbdd1972a0c859dfc3c13",
|
1233 |
+
"sha256:b8150f721c101abdef99073bf66d3903e292d851bee51910839831caba341a75",
|
1234 |
+
"sha256:ba09ef14ca9893954244fd872798b4ccb2367c165946ce2dd7376aebdde8e3ac",
|
1235 |
+
"sha256:d3a2f5999215a3a06a4fc218026cd84c61b8b2b40ac5296a6db1f1451ef04c1e",
|
1236 |
+
"sha256:e5f923aa6a47e133d1cf87d60700889d7eae68988704e20c75fb2d65677a8e4b"
|
1237 |
+
],
|
1238 |
+
"markers": "python_version >= '3.7'",
|
1239 |
+
"version": "==6.2"
|
1240 |
+
},
|
1241 |
+
"traitlets": {
|
1242 |
+
"hashes": [
|
1243 |
+
"sha256:9e6ec080259b9a5940c797d58b613b5e31441c2257b87c2e795c5228ae80d2d8",
|
1244 |
+
"sha256:f6cde21a9c68cf756af02035f72d5a723bf607e862e7be33ece505abf4a3bad9"
|
1245 |
+
],
|
1246 |
+
"markers": "python_version >= '3.7'",
|
1247 |
+
"version": "==5.9.0"
|
1248 |
+
},
|
1249 |
+
"uri-template": {
|
1250 |
+
"hashes": [
|
1251 |
+
"sha256:934e4d09d108b70eb8a24410af8615294d09d279ce0e7cbcdaef1bd21f932b06",
|
1252 |
+
"sha256:f1699c77b73b925cf4937eae31ab282a86dc885c333f2e942513f08f691fc7db"
|
1253 |
+
],
|
1254 |
+
"version": "==1.2.0"
|
1255 |
+
},
|
1256 |
+
"urllib3": {
|
1257 |
+
"hashes": [
|
1258 |
+
"sha256:076907bf8fd355cde77728471316625a4d2f7e713c125f51953bb5b3eecf4f72",
|
1259 |
+
"sha256:75edcdc2f7d85b137124a6c3c9fc3933cdeaa12ecb9a6a959f22797a0feca7e1"
|
1260 |
+
],
|
1261 |
+
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4, 3.5'",
|
1262 |
+
"version": "==1.26.14"
|
1263 |
+
},
|
1264 |
+
"wcwidth": {
|
1265 |
+
"hashes": [
|
1266 |
+
"sha256:795b138f6875577cd91bba52baf9e445cd5118fd32723b460e30a0af30ea230e",
|
1267 |
+
"sha256:a5220780a404dbe3353789870978e472cfe477761f06ee55077256e509b156d0"
|
1268 |
+
],
|
1269 |
+
"version": "==0.2.6"
|
1270 |
+
},
|
1271 |
+
"webcolors": {
|
1272 |
+
"hashes": [
|
1273 |
+
"sha256:16d043d3a08fd6a1b1b7e3e9e62640d09790dce80d2bdd4792a175b35fe794a9",
|
1274 |
+
"sha256:d98743d81d498a2d3eaf165196e65481f0d2ea85281463d856b1e51b09f62dce"
|
1275 |
+
],
|
1276 |
+
"version": "==1.12"
|
1277 |
+
},
|
1278 |
+
"webencodings": {
|
1279 |
+
"hashes": [
|
1280 |
+
"sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78",
|
1281 |
+
"sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"
|
1282 |
+
],
|
1283 |
+
"version": "==0.5.1"
|
1284 |
+
},
|
1285 |
+
"websocket-client": {
|
1286 |
+
"hashes": [
|
1287 |
+
"sha256:3f09e6d8230892547132177f575a4e3e73cfdf06526e20cc02aa1c3b47184d40",
|
1288 |
+
"sha256:cdf5877568b7e83aa7cf2244ab56a3213de587bbe0ce9d8b9600fc77b455d89e"
|
1289 |
+
],
|
1290 |
+
"markers": "python_version >= '3.7'",
|
1291 |
+
"version": "==1.5.1"
|
1292 |
+
},
|
1293 |
+
"y-py": {
|
1294 |
+
"hashes": [
|
1295 |
+
"sha256:05f805b58422d5d7c8e7e8e2141d1c3cac4daaa4557ae6a9b84b141fe8d6289e",
|
1296 |
+
"sha256:065f90501cf008375d70be6ce72dd41745e09d088f0b545f5f914d2c3f04f7ae",
|
1297 |
+
"sha256:0c0e333c20b0a6ce4a5851203d45898ab93f16426c342420b931e190c5b71d3d",
|
1298 |
+
"sha256:13b9d2959d9a26536b6ad118fb026ff19bd79da52e4addf6f3a562e7c01d516e",
|
1299 |
+
"sha256:1906f13e8d5ebfbd9c7948f57bc6f6f53b451b19c99350f42a0f648147a8acfe",
|
1300 |
+
"sha256:1f54625b9ed4e787872c45d3044dcfd04c0da4258d9914f3d32308830b35246c",
|
1301 |
+
"sha256:202b2a3e42e0a1eaedee26f8a3bc73cd9f994c4c2b15511ea56b9838178eb380",
|
1302 |
+
"sha256:2532ea5aefb223fd688c93860199d348a7601d814aac9e8784d816314588ddeb",
|
1303 |
+
"sha256:25637e3d011ca6f877a24f3083ff2549d1d619406d7e8a1455c445527205046c",
|
1304 |
+
"sha256:2692c808bf28f797f8d693f45dc86563ac3b1626579f67ce9546dca69644d687",
|
1305 |
+
"sha256:27c1e9a866146d250e9e16d99fe22a40c82f5b592ab85da97e5679fc3841c7ce",
|
1306 |
+
"sha256:2ffebe5e62cbfee6e24593927dedba77dc13ac4cfb9c822074ab566b1fb63d59",
|
1307 |
+
"sha256:50cfa0532bcee27edb8c64743b49570e28bb76a00cd384ead1d84b6f052d9368",
|
1308 |
+
"sha256:55098440e32339c2dc3d652fb36bb77a4927dee5fd4ab0cb1fe12fdd163fd4f5",
|
1309 |
+
"sha256:5dbd8d177ec7b9fef4a7b6d22eb2f8d5606fd5aac31cf2eab0dc18f0b3504c7c",
|
1310 |
+
"sha256:63ef8e5b76cd54578a7fd5f72d8c698d9ccd7c555c7900ebfd38a24d397c3b15",
|
1311 |
+
"sha256:73200c59bb253b880825466717941ac57267f2f685b053e183183cb6fe82874d",
|
1312 |
+
"sha256:7353af0e9c1f42fbf0ab340e253eeb333d58c890fa91d3eadb1b9adaf9336732",
|
1313 |
+
"sha256:742c486d5b792c4ad76e09426161302edddca85efe826fa01dcee50907326cd7",
|
1314 |
+
"sha256:753aaae817d658a1e9d271663439d8e83d9d8effa45590ecdcadc600c7cf77e3",
|
1315 |
+
"sha256:76b3480e7037ac9390c450e2aff9e46e2c9e61520c0d88afe228110ec728adc5",
|
1316 |
+
"sha256:800e73d2110b97a74c52db2c8ce03a78e96f0d66a7e0c87d8254170a67c2db0e",
|
1317 |
+
"sha256:85585e669d7679126e4a04e4bc0a063a641175a74eecfe47539e8da3e5b1da6e",
|
1318 |
+
"sha256:8d4dfc276f988175baaa4ab321c3321a16ce33db3356c9bc5f4dea0db3de55aa",
|
1319 |
+
"sha256:91be189fae8ba242528333e266e38d65cae3d9a09fe45867fab8578a3ddf2ea2",
|
1320 |
+
"sha256:9484a3fc33f812234e58a5ee834b42bb0a628054d61b5c06c323aa56c12e557d",
|
1321 |
+
"sha256:9513ae81fcc805671ae134c4c7421ca322acf92ce8b33817e1775ea8c0176973",
|
1322 |
+
"sha256:95d13b38c9055d607565b77cbae12e2bf0c1671c5cb8f2ee2e1230d41d2d6d34",
|
1323 |
+
"sha256:9983e99e3a61452b39ffce98206c7e4c6d260f4e917c8fe53fb54aaf25df89a3",
|
1324 |
+
"sha256:9a59603cf42c20d02ee5add2e3d0ce48e89c480a2a02f642fb77f142c4f37958",
|
1325 |
+
"sha256:a57d81260e048caacf43a2f851766687f53e8a8356df6947fb0eee7336a7e2de",
|
1326 |
+
"sha256:a7977eeaceaeb0dfffcc5643c985c337ebc33a0b1d792ae0a9b1331cdd97366f",
|
1327 |
+
"sha256:add793f5f5c7c7a3eb1b09ffc771bdaae10a0bd482a370bf696b83f8dee8d1b4",
|
1328 |
+
"sha256:ae82a6d9cbaff8cb7505e81b5b7f9cd7756bb7e7110aef7914375fe56b012a90",
|
1329 |
+
"sha256:af6df5ec1d66ee2d962026635d60e84ad35fc01b2a1e36b993360c0ce60ae349",
|
1330 |
+
"sha256:afa9a11aa2880dd8689894f3269b653e6d3bd1956963d5329be9a5bf021dab62",
|
1331 |
+
"sha256:b0ed760e6aa5316227a0ba2d5d29634a4ef2d72c8bc55169ac01664e17e4b536",
|
1332 |
+
"sha256:b44473bb32217c78e18db66f497f6c8be33e339bab5f52398bb2468c904d5140",
|
1333 |
+
"sha256:b67dad339f9b6701f74ff7a6e901c7909eca4eea02cf955b28d87a42650bd1be",
|
1334 |
+
"sha256:bc9052a814e8b7ec756371a191f38de68b956437e0bb429c2dd503e658f298f9",
|
1335 |
+
"sha256:c1f5f287cc7ae127ed6a2fb1546e631b316a41d087d7d2db9caa3e5f59906dcf",
|
1336 |
+
"sha256:c3ae6d22b7cc599220a26b06da6ead9fd582eea5fdb6273b06fa3f060d0a26a7",
|
1337 |
+
"sha256:c42f3a6cd20153925b00c49af855a3277989d411bb8ea849095be943ee160821",
|
1338 |
+
"sha256:c7ca64a2a97f708569dcabd55865915943e30267bf6d26c4d212d005951efe62",
|
1339 |
+
"sha256:caf9b1feb69379d424a1d3d7c899b8e0389a3fb3131d39c3c03dcc3d4a93dbdc",
|
1340 |
+
"sha256:cb68445414940efe547291340e91604c7b8379b60822678ef29f4fc2a0e11c62",
|
1341 |
+
"sha256:cc8e5f38842a4b043c9592bfa9a740147ddb8fac2d7a5b7bf6d52466c090ec23",
|
1342 |
+
"sha256:cd6f373dbf592ad83aaf95c16abebc8678928e49bd509ebd593259e1908345ae",
|
1343 |
+
"sha256:d2da2a9e28dceab4832945a745cad507579f52b4d0c9e2f54ae156eb56875861",
|
1344 |
+
"sha256:d373c6bb8e21d5f7ec0833b76fa1ab480086ada602ef5bbf4724a25a21a00b6a",
|
1345 |
+
"sha256:d722d6a27230c1f395535da5cee6a9a16497c6343afd262c846090075c083009",
|
1346 |
+
"sha256:db1ac7f2d1862eb4c448cf76183399d555a63dbe2452bafecb1c2f691e36d687",
|
1347 |
+
"sha256:df78a0409dca11554a4b6442d7a8e61f762c3cfc78d55d98352392869a6b9ae0",
|
1348 |
+
"sha256:e30fe2491d095c6d695a2c96257967fd3e2497f0f777030c8492d03c18d46e2a",
|
1349 |
+
"sha256:e370ce076781adea161b04d2f666e8b4f89bc7e8927ef842fbb0283d3bfa73e0",
|
1350 |
+
"sha256:ecd3cb0d13ac92e7b9235d1024dba9af0788161246f12dcf1f635d634ccb206a",
|
1351 |
+
"sha256:ed0fd5265905cc7e23709479bc152d69f4972dec32fa322d20cb77f749707e78",
|
1352 |
+
"sha256:f6d87d0c2e87990bc00c049742d36a5dbbb1510949459af17198728890ee748a",
|
1353 |
+
"sha256:f7434c77cd23592973ed63341b8d337e6aebaba5ed40d7f22e2d43dfd0c3a56e",
|
1354 |
+
"sha256:f8b67ae37af8aac6160fda66c0f73bcdf65c06da9022eb76192c3fc45cfab994",
|
1355 |
+
"sha256:f8f238144a302f17eb26b122cad9382fcff5ec6653b8a562130b9a5e44010098",
|
1356 |
+
"sha256:fa685f7e43ce490dfb1e392ac48f584b75cd21f05dc526c160d15308236ce8a0",
|
1357 |
+
"sha256:fce5feb57f6231376eb10d1fb68c60da106ffa0b520b3129471c466eff0304cc",
|
1358 |
+
"sha256:fdafb93bfd5532b13a53c4090675bcd31724160017ecc73e492dc1211bc0377a",
|
1359 |
+
"sha256:fe70d0134fe2115c08866f0cac0eb5c0788093872b5026eb438a74e1ebafd659",
|
1360 |
+
"sha256:ff3ddedaa95284f4f22a92b362f658f3d92f272d8c0fa009051bd5490c4d5a04"
|
1361 |
+
],
|
1362 |
+
"version": "==0.5.9"
|
1363 |
+
},
|
1364 |
+
"ypy-websocket": {
|
1365 |
+
"hashes": [
|
1366 |
+
"sha256:491b2cc4271df4dde9be83017c15f4532b597dc43148472eb20c5aeb838a5b46",
|
1367 |
+
"sha256:9049d5a7d61c26c2b5a39757c9ffcbe2274bf3553adeea8de7fe1c04671d4145"
|
1368 |
+
],
|
1369 |
+
"markers": "python_version >= '3.7'",
|
1370 |
+
"version": "==0.8.2"
|
1371 |
+
}
|
1372 |
+
},
|
1373 |
+
"develop": {}
|
1374 |
+
}
|
midterm/README.md
ADDED
File without changes
|
midterm/data/01_raw/CBC_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
midterm/midterm/__init__.py
ADDED
File without changes
|
midterm/midterm/take_at_home_(1).ipynb
ADDED
@@ -0,0 +1,1258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "oZ6_2B0E1DAh"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# Midterm - Spring 2023\n",
|
10 |
+
"\n",
|
11 |
+
"## Problem 1: Take-at-home (45 points total)\n",
|
12 |
+
"\n",
|
13 |
+
"You are applying for a position at the data science team of USDA and you are given data associated with determining appropriate parasite treatment of canines. The suggested treatment options are determined based on a **logistic regression** model that predicts if the canine is infected with a parasite. \n",
|
14 |
+
"\n",
|
15 |
+
"The data is given in the site: https://data.world/ehales/grls-parasite-study/workspace/file?filename=CBC_data.csv and more specifically in the CBC_data.csv file. Login using you University Google account to access the data and the description that includes a paper on the study (**you dont need to read the paper to solve this problem**). Your target variable $y$ column is titled `parasite_status`. \n",
|
16 |
+
"\n",
|
17 |
+
"\n"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "markdown",
|
22 |
+
"metadata": {
|
23 |
+
"id": "Aq8bln4u1DAo"
|
24 |
+
},
|
25 |
+
"source": [
|
26 |
+
"### Question 1 - Feature Engineering (5 points)\n",
|
27 |
+
"\n",
|
28 |
+
"Write the posterior probability expressions for logistic regression for the problem you are given to solve."
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "markdown",
|
33 |
+
"metadata": {
|
34 |
+
"id": "_kd85pkA1DA3"
|
35 |
+
},
|
36 |
+
"source": [
|
37 |
+
"$$p(y=1| \\mathbf{x}, \\mathbf w)= \\frac{p(\\mathbf{x}| y=1)p(y=1)}{p(\\mathbf{x}|y=1)p(y=1)+p(\\mathbf{x}|y=0)}=\\frac{1}{1+\\exp(-\\alpha)}=\\sigma(\\alpha)$$\n",
|
38 |
+
"\n",
|
39 |
+
"$$p(y=0| \\mathbf{x}, \\mathbf w)=1-p(y=1|\\mathbf{x}^{T}\\mathbf{w})=1-\\sigma(\\alpha)=\\sigma(-\\alpha)$$"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "markdown",
|
44 |
+
"metadata": {
|
45 |
+
"id": "Gh6Fi5hz1DA6"
|
46 |
+
},
|
47 |
+
"source": [
|
48 |
+
"\n",
|
49 |
+
"\n",
|
50 |
+
"### Question 2 - Decision Boundary (5 points)\n",
|
51 |
+
"\n",
|
52 |
+
"Write the expression for the decision boundary assuming that $p(y=1)=p(y=0)$. The decision boundary is the line that separates the two classes.\n",
|
53 |
+
"\n",
|
54 |
+
"\n",
|
55 |
+
"\n"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "markdown",
|
60 |
+
"metadata": {
|
61 |
+
"id": "HMr2tF_J1DA-"
|
62 |
+
},
|
63 |
+
"source": [
|
64 |
+
"$$p(y=1)=p(y=0)→\\sigma(\\alpha)=-\\sigma(\\alpha)→2\\sigma(\\alpha)=1→\\sigma(\\alpha)=0.5≡\\sigma(\\mathbf{w}^T\\mathbf{x})=0.5$$"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "markdown",
|
69 |
+
"metadata": {
|
70 |
+
"id": "750Hn0iC1DBA"
|
71 |
+
},
|
72 |
+
"source": [
|
73 |
+
"\n",
|
74 |
+
"\n",
|
75 |
+
"### Question 3 - Loss function (5 points)\n",
|
76 |
+
"\n",
|
77 |
+
"Write the expression of the loss as a function of $\\mathbf w$ that makes sense for you to use in this problem. \n",
|
78 |
+
"\n",
|
79 |
+
"NOTE: The loss will be a function that will include this function: \n",
|
80 |
+
"\n",
|
81 |
+
"$$\\sigma(a) = \\frac{1}{1+e^{-a}}$$\n",
|
82 |
+
"\n"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "markdown",
|
87 |
+
"metadata": {
|
88 |
+
"id": "jxiR0jEh1DBD"
|
89 |
+
},
|
90 |
+
"source": [
|
91 |
+
"$$\n",
|
92 |
+
"\\begin{align}\n",
|
93 |
+
"L_{CE} = -[\\sum_{i=1}^m \\{y_i\\ln \\hat{y}_i + (1-y_i)\\ln(1-\\hat{y}_i)\\}]\\\\\n",
|
94 |
+
"= -[\\sum_{i=1}^m\\{y_i\\ln\\frac{1}{1+\\exp(-\\mathbf{w}^T\\mathbf{x})}+(1-y_i)\\ln(1-\\frac{1}{1+\\exp(-\\mathbf{w}^T\\mathbf{x})})\\}] \\\\\n",
|
95 |
+
"= -[\\sum_{i=1}^m\\{y_i[\\ln\\frac{1}{1+\\exp(-\\alpha)}-\\ln(1-\\frac{1}{1+\\exp(-\\alpha)})]+\\ln(1-\\frac{1}{1+\\exp(-\\alpha)})\\}] \\\\\n",
|
96 |
+
"= -[\\sum_{i=1}^m\\{y_i\\mathbf{w}^T\\mathbf{x}-\\ln(1+\\exp(\\mathbf{w}^T\\mathbf{x}))\\}]\n",
|
97 |
+
"\\end{align}\n",
|
98 |
+
"$$\n"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"cell_type": "markdown",
|
103 |
+
"metadata": {
|
104 |
+
"id": "AW4xA4221DBF"
|
105 |
+
},
|
106 |
+
"source": [
|
107 |
+
"\n",
|
108 |
+
"### Question 4 - Gradient (5 points)\n",
|
109 |
+
"\n",
|
110 |
+
"Write the expression of the gradient of the loss with respect to the parameters - show all your work.\n",
|
111 |
+
"\n"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "markdown",
|
116 |
+
"metadata": {
|
117 |
+
"id": "bo0YDA0i1DBJ"
|
118 |
+
},
|
119 |
+
"source": [
|
120 |
+
"$$\n",
|
121 |
+
"\\begin{align}\n",
|
122 |
+
"\\nabla_\\mathbf w L_{CE} = \\nabla_\\mathbf{w}-[\\sum_{i=1}^m\\{y_i\\mathbf{w}^T\\mathbf{x}-ln(1+\\exp(\\mathbf{w}^T\\mathbf{x})\\}] \\\\\n",
|
123 |
+
"= [-\\sum_{i=1}^my_ix_i] + [\\sum_{i=1}^m\\frac{1}{1+\\exp(\\mathbf{w}^T\\mathbf{x})}\\exp(\\mathbf{w}^T\\mathbf{x})*x_i] \\\\\n",
|
124 |
+
"= [-\\sum_{i=1}^my_ix_i] + [\\sum_{i=1}^m(\\sigma(\\mathbf{w}^T\\mathbf{x}))*x_i] \\\\\n",
|
125 |
+
"= \\sum_{i=1}^m (\\sigma(\\mathbf{w}^T\\mathbf{x})-y_i)x_i= \\sum_{i=1}^m(\\hat{y}_i-y_i)x_i\n",
|
126 |
+
"\\end{align}\n",
|
127 |
+
"$$"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "markdown",
|
132 |
+
"metadata": {
|
133 |
+
"id": "BpUryvTT1DBM"
|
134 |
+
},
|
135 |
+
"source": [
|
136 |
+
"### Question 5 - Imbalanced dataset (10 points)\n",
|
137 |
+
"\n",
|
138 |
+
"You are now told that in the dataset \n",
|
139 |
+
"\n",
|
140 |
+
"$$p(y=0) >> p(y=1)$$\n",
|
141 |
+
"\n",
|
142 |
+
"Can you comment if the accuracy of Logistic Regression will be affected by such imbalance?\n",
|
143 |
+
"\n"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "markdown",
|
148 |
+
"metadata": {
|
149 |
+
"id": "TqdImYQf1DBP"
|
150 |
+
},
|
151 |
+
"source": [
|
152 |
+
"We know that the loss function heavily penalizes confident wrong decisions. We expect then, that the model will be strongly incentivized to predict 0 more frequently than 1, regardless of the true outcome, as this minimizes loss. This will cause more false negatives, and will need to be considered with regards to our ROC curve. The accuracy will be affected, as there are so few positive examples that the model cannot accurately learn them."
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "markdown",
|
157 |
+
"metadata": {
|
158 |
+
"id": "FK1Su76R1DBS"
|
159 |
+
},
|
160 |
+
"source": [
|
161 |
+
"\n",
|
162 |
+
"### Question 6 - SGD (15 points)\n",
|
163 |
+
"\n",
|
164 |
+
"The interviewer was impressed with your answers and wants to test your programming skills. \n",
|
165 |
+
"\n",
|
166 |
+
"1. Use the dataset to train a logistic regressor that will predict the target variable $y$. \n",
|
167 |
+
"\n",
|
168 |
+
" 2. Report the harmonic mean of precision (p) and recall (r) i.e the [metric called $F_1$ score](https://en.wikipedia.org/wiki/F-score) that is calculated as shown below using a test dataset that is 20% of each group. Plot the $F_1$ score vs the iteration number $t$. \n",
|
169 |
+
"\n",
|
170 |
+
"$$F_1 = \\frac{2}{r^{-1} + p^{-1}}$$\n",
|
171 |
+
"\n",
|
172 |
+
"Your code includes hyperparameter optimization of the learning rate and mini batch size. Please learn about cross validation which is a splitting strategy for tuning models [here](https://scikit-learn.org/stable/modules/cross_validation.html).\n",
|
173 |
+
"\n",
|
174 |
+
"You are allowed to use any library you want to code this problem.\n",
|
175 |
+
"\n"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": 1,
|
181 |
+
"metadata": {
|
182 |
+
"id": "cnxqYSvL1DBV"
|
183 |
+
},
|
184 |
+
"outputs": [],
|
185 |
+
"source": [
|
186 |
+
"# write your code here"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "code",
|
191 |
+
"execution_count": 2,
|
192 |
+
"metadata": {
|
193 |
+
"tags": []
|
194 |
+
},
|
195 |
+
"outputs": [
|
196 |
+
{
|
197 |
+
"data": {
|
198 |
+
"text/html": [
|
199 |
+
"<div>\n",
|
200 |
+
"<style scoped>\n",
|
201 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
202 |
+
" vertical-align: middle;\n",
|
203 |
+
" }\n",
|
204 |
+
"\n",
|
205 |
+
" .dataframe tbody tr th {\n",
|
206 |
+
" vertical-align: top;\n",
|
207 |
+
" }\n",
|
208 |
+
"\n",
|
209 |
+
" .dataframe thead th {\n",
|
210 |
+
" text-align: right;\n",
|
211 |
+
" }\n",
|
212 |
+
"</style>\n",
|
213 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
214 |
+
" <thead>\n",
|
215 |
+
" <tr style=\"text-align: right;\">\n",
|
216 |
+
" <th></th>\n",
|
217 |
+
" <th>ID</th>\n",
|
218 |
+
" <th>SEX</th>\n",
|
219 |
+
" <th>TYPEAREA</th>\n",
|
220 |
+
" <th>SEX.REPRO</th>\n",
|
221 |
+
" <th>REPRO.STATUS</th>\n",
|
222 |
+
" <th>AGE</th>\n",
|
223 |
+
" <th>PARASITE_STATUS</th>\n",
|
224 |
+
" <th>RBC</th>\n",
|
225 |
+
" <th>HGB</th>\n",
|
226 |
+
" <th>WBC</th>\n",
|
227 |
+
" <th>EOS.CNT</th>\n",
|
228 |
+
" <th>MONO.CNT</th>\n",
|
229 |
+
" <th>NUT.CNT</th>\n",
|
230 |
+
" <th>PL.CNT</th>\n",
|
231 |
+
" <th>LYMP.CNT</th>\n",
|
232 |
+
" </tr>\n",
|
233 |
+
" </thead>\n",
|
234 |
+
" <tbody>\n",
|
235 |
+
" <tr>\n",
|
236 |
+
" <th>0</th>\n",
|
237 |
+
" <td>grls5ZUT2BYY</td>\n",
|
238 |
+
" <td>Male</td>\n",
|
239 |
+
" <td>Suburban</td>\n",
|
240 |
+
" <td>IntactMale</td>\n",
|
241 |
+
" <td>Intact</td>\n",
|
242 |
+
" <td>9</td>\n",
|
243 |
+
" <td>Negative</td>\n",
|
244 |
+
" <td>6.4</td>\n",
|
245 |
+
" <td>16.6</td>\n",
|
246 |
+
" <td>14.2</td>\n",
|
247 |
+
" <td>142.0</td>\n",
|
248 |
+
" <td>852.0</td>\n",
|
249 |
+
" <td>6390.0</td>\n",
|
250 |
+
" <td>210.0</td>\n",
|
251 |
+
" <td>6816.0</td>\n",
|
252 |
+
" </tr>\n",
|
253 |
+
" <tr>\n",
|
254 |
+
" <th>1</th>\n",
|
255 |
+
" <td>grls8DCONYUU</td>\n",
|
256 |
+
" <td>Female</td>\n",
|
257 |
+
" <td>Rural</td>\n",
|
258 |
+
" <td>NeuteredFemale</td>\n",
|
259 |
+
" <td>Neutered</td>\n",
|
260 |
+
" <td>6</td>\n",
|
261 |
+
" <td>Negative</td>\n",
|
262 |
+
" <td>4.8</td>\n",
|
263 |
+
" <td>12.5</td>\n",
|
264 |
+
" <td>10.0</td>\n",
|
265 |
+
" <td>400.0</td>\n",
|
266 |
+
" <td>300.0</td>\n",
|
267 |
+
" <td>4800.0</td>\n",
|
268 |
+
" <td>209.0</td>\n",
|
269 |
+
" <td>4500.0</td>\n",
|
270 |
+
" </tr>\n",
|
271 |
+
" <tr>\n",
|
272 |
+
" <th>2</th>\n",
|
273 |
+
" <td>grlsUC5R4PTT</td>\n",
|
274 |
+
" <td>Male</td>\n",
|
275 |
+
" <td>Suburban</td>\n",
|
276 |
+
" <td>IntactMale</td>\n",
|
277 |
+
" <td>Intact</td>\n",
|
278 |
+
" <td>14</td>\n",
|
279 |
+
" <td>Negative</td>\n",
|
280 |
+
" <td>6.2</td>\n",
|
281 |
+
" <td>17.3</td>\n",
|
282 |
+
" <td>9.5</td>\n",
|
283 |
+
" <td>190.0</td>\n",
|
284 |
+
" <td>475.0</td>\n",
|
285 |
+
" <td>7315.0</td>\n",
|
286 |
+
" <td>164.0</td>\n",
|
287 |
+
" <td>1520.0</td>\n",
|
288 |
+
" </tr>\n",
|
289 |
+
" <tr>\n",
|
290 |
+
" <th>3</th>\n",
|
291 |
+
" <td>grlsXUR2PY88</td>\n",
|
292 |
+
" <td>Male</td>\n",
|
293 |
+
" <td>Rural</td>\n",
|
294 |
+
" <td>IntactMale</td>\n",
|
295 |
+
" <td>Intact</td>\n",
|
296 |
+
" <td>6</td>\n",
|
297 |
+
" <td>Negative</td>\n",
|
298 |
+
" <td>5.4</td>\n",
|
299 |
+
" <td>13.8</td>\n",
|
300 |
+
" <td>14.1</td>\n",
|
301 |
+
" <td>1692.0</td>\n",
|
302 |
+
" <td>423.0</td>\n",
|
303 |
+
" <td>7755.0</td>\n",
|
304 |
+
" <td>254.0</td>\n",
|
305 |
+
" <td>4230.0</td>\n",
|
306 |
+
" </tr>\n",
|
307 |
+
" <tr>\n",
|
308 |
+
" <th>4</th>\n",
|
309 |
+
" <td>grlsTBZUF3GG</td>\n",
|
310 |
+
" <td>Female</td>\n",
|
311 |
+
" <td>Rural</td>\n",
|
312 |
+
" <td>IntactFemale</td>\n",
|
313 |
+
" <td>Intact</td>\n",
|
314 |
+
" <td>18</td>\n",
|
315 |
+
" <td>Negative</td>\n",
|
316 |
+
" <td>5.9</td>\n",
|
317 |
+
" <td>14.4</td>\n",
|
318 |
+
" <td>6.5</td>\n",
|
319 |
+
" <td>390.0</td>\n",
|
320 |
+
" <td>130.0</td>\n",
|
321 |
+
" <td>2795.0</td>\n",
|
322 |
+
" <td>213.0</td>\n",
|
323 |
+
" <td>3185.0</td>\n",
|
324 |
+
" </tr>\n",
|
325 |
+
" </tbody>\n",
|
326 |
+
"</table>\n",
|
327 |
+
"</div>"
|
328 |
+
],
|
329 |
+
"text/plain": [
|
330 |
+
" ID SEX TYPEAREA SEX.REPRO REPRO.STATUS AGE \\\n",
|
331 |
+
"0 grls5ZUT2BYY Male Suburban IntactMale Intact 9 \n",
|
332 |
+
"1 grls8DCONYUU Female Rural NeuteredFemale Neutered 6 \n",
|
333 |
+
"2 grlsUC5R4PTT Male Suburban IntactMale Intact 14 \n",
|
334 |
+
"3 grlsXUR2PY88 Male Rural IntactMale Intact 6 \n",
|
335 |
+
"4 grlsTBZUF3GG Female Rural IntactFemale Intact 18 \n",
|
336 |
+
"\n",
|
337 |
+
" PARASITE_STATUS RBC HGB WBC EOS.CNT MONO.CNT NUT.CNT PL.CNT \\\n",
|
338 |
+
"0 Negative 6.4 16.6 14.2 142.0 852.0 6390.0 210.0 \n",
|
339 |
+
"1 Negative 4.8 12.5 10.0 400.0 300.0 4800.0 209.0 \n",
|
340 |
+
"2 Negative 6.2 17.3 9.5 190.0 475.0 7315.0 164.0 \n",
|
341 |
+
"3 Negative 5.4 13.8 14.1 1692.0 423.0 7755.0 254.0 \n",
|
342 |
+
"4 Negative 5.9 14.4 6.5 390.0 130.0 2795.0 213.0 \n",
|
343 |
+
"\n",
|
344 |
+
" LYMP.CNT \n",
|
345 |
+
"0 6816.0 \n",
|
346 |
+
"1 4500.0 \n",
|
347 |
+
"2 1520.0 \n",
|
348 |
+
"3 4230.0 \n",
|
349 |
+
"4 3185.0 "
|
350 |
+
]
|
351 |
+
},
|
352 |
+
"execution_count": 2,
|
353 |
+
"metadata": {},
|
354 |
+
"output_type": "execute_result"
|
355 |
+
}
|
356 |
+
],
|
357 |
+
"source": [
|
358 |
+
"import pandas as pd\n",
|
359 |
+
"\n",
|
360 |
+
"df = pd.read_csv('../data/01_raw/CBC_data.csv')\n",
|
361 |
+
"df.head()"
|
362 |
+
]
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"cell_type": "code",
|
366 |
+
"execution_count": 3,
|
367 |
+
"metadata": {
|
368 |
+
"tags": []
|
369 |
+
},
|
370 |
+
"outputs": [
|
371 |
+
{
|
372 |
+
"name": "stderr",
|
373 |
+
"output_type": "stream",
|
374 |
+
"text": [
|
375 |
+
"/tmp/ipykernel_34276/1867621695.py:5: SettingWithCopyWarning: \n",
|
376 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
377 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
378 |
+
"\n",
|
379 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
380 |
+
" df2[x] = LabelEncoder().fit_transform(df2[x])\n",
|
381 |
+
"/tmp/ipykernel_34276/1867621695.py:5: SettingWithCopyWarning: \n",
|
382 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
383 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
384 |
+
"\n",
|
385 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
386 |
+
" df2[x] = LabelEncoder().fit_transform(df2[x])\n",
|
387 |
+
"/tmp/ipykernel_34276/1867621695.py:5: SettingWithCopyWarning: \n",
|
388 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
389 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
390 |
+
"\n",
|
391 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
392 |
+
" df2[x] = LabelEncoder().fit_transform(df2[x])\n"
|
393 |
+
]
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"data": {
|
397 |
+
"text/html": [
|
398 |
+
"<div>\n",
|
399 |
+
"<style scoped>\n",
|
400 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
401 |
+
" vertical-align: middle;\n",
|
402 |
+
" }\n",
|
403 |
+
"\n",
|
404 |
+
" .dataframe tbody tr th {\n",
|
405 |
+
" vertical-align: top;\n",
|
406 |
+
" }\n",
|
407 |
+
"\n",
|
408 |
+
" .dataframe thead th {\n",
|
409 |
+
" text-align: right;\n",
|
410 |
+
" }\n",
|
411 |
+
"</style>\n",
|
412 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
413 |
+
" <thead>\n",
|
414 |
+
" <tr style=\"text-align: right;\">\n",
|
415 |
+
" <th></th>\n",
|
416 |
+
" <th>SEX</th>\n",
|
417 |
+
" <th>TYPEAREA</th>\n",
|
418 |
+
" <th>SEX.REPRO</th>\n",
|
419 |
+
" <th>REPRO.STATUS</th>\n",
|
420 |
+
" <th>AGE</th>\n",
|
421 |
+
" <th>PARASITE_STATUS</th>\n",
|
422 |
+
" <th>RBC</th>\n",
|
423 |
+
" <th>HGB</th>\n",
|
424 |
+
" <th>WBC</th>\n",
|
425 |
+
" <th>EOS.CNT</th>\n",
|
426 |
+
" <th>MONO.CNT</th>\n",
|
427 |
+
" <th>NUT.CNT</th>\n",
|
428 |
+
" <th>PL.CNT</th>\n",
|
429 |
+
" <th>LYMP.CNT</th>\n",
|
430 |
+
" </tr>\n",
|
431 |
+
" </thead>\n",
|
432 |
+
" <tbody>\n",
|
433 |
+
" <tr>\n",
|
434 |
+
" <th>0</th>\n",
|
435 |
+
" <td>1</td>\n",
|
436 |
+
" <td>Suburban</td>\n",
|
437 |
+
" <td>IntactMale</td>\n",
|
438 |
+
" <td>0</td>\n",
|
439 |
+
" <td>9</td>\n",
|
440 |
+
" <td>0</td>\n",
|
441 |
+
" <td>6.4</td>\n",
|
442 |
+
" <td>16.6</td>\n",
|
443 |
+
" <td>14.2</td>\n",
|
444 |
+
" <td>142.0</td>\n",
|
445 |
+
" <td>852.0</td>\n",
|
446 |
+
" <td>6390.0</td>\n",
|
447 |
+
" <td>210.0</td>\n",
|
448 |
+
" <td>6816.0</td>\n",
|
449 |
+
" </tr>\n",
|
450 |
+
" <tr>\n",
|
451 |
+
" <th>1</th>\n",
|
452 |
+
" <td>0</td>\n",
|
453 |
+
" <td>Rural</td>\n",
|
454 |
+
" <td>NeuteredFemale</td>\n",
|
455 |
+
" <td>1</td>\n",
|
456 |
+
" <td>6</td>\n",
|
457 |
+
" <td>0</td>\n",
|
458 |
+
" <td>4.8</td>\n",
|
459 |
+
" <td>12.5</td>\n",
|
460 |
+
" <td>10.0</td>\n",
|
461 |
+
" <td>400.0</td>\n",
|
462 |
+
" <td>300.0</td>\n",
|
463 |
+
" <td>4800.0</td>\n",
|
464 |
+
" <td>209.0</td>\n",
|
465 |
+
" <td>4500.0</td>\n",
|
466 |
+
" </tr>\n",
|
467 |
+
" <tr>\n",
|
468 |
+
" <th>2</th>\n",
|
469 |
+
" <td>1</td>\n",
|
470 |
+
" <td>Suburban</td>\n",
|
471 |
+
" <td>IntactMale</td>\n",
|
472 |
+
" <td>0</td>\n",
|
473 |
+
" <td>14</td>\n",
|
474 |
+
" <td>0</td>\n",
|
475 |
+
" <td>6.2</td>\n",
|
476 |
+
" <td>17.3</td>\n",
|
477 |
+
" <td>9.5</td>\n",
|
478 |
+
" <td>190.0</td>\n",
|
479 |
+
" <td>475.0</td>\n",
|
480 |
+
" <td>7315.0</td>\n",
|
481 |
+
" <td>164.0</td>\n",
|
482 |
+
" <td>1520.0</td>\n",
|
483 |
+
" </tr>\n",
|
484 |
+
" <tr>\n",
|
485 |
+
" <th>3</th>\n",
|
486 |
+
" <td>1</td>\n",
|
487 |
+
" <td>Rural</td>\n",
|
488 |
+
" <td>IntactMale</td>\n",
|
489 |
+
" <td>0</td>\n",
|
490 |
+
" <td>6</td>\n",
|
491 |
+
" <td>0</td>\n",
|
492 |
+
" <td>5.4</td>\n",
|
493 |
+
" <td>13.8</td>\n",
|
494 |
+
" <td>14.1</td>\n",
|
495 |
+
" <td>1692.0</td>\n",
|
496 |
+
" <td>423.0</td>\n",
|
497 |
+
" <td>7755.0</td>\n",
|
498 |
+
" <td>254.0</td>\n",
|
499 |
+
" <td>4230.0</td>\n",
|
500 |
+
" </tr>\n",
|
501 |
+
" <tr>\n",
|
502 |
+
" <th>4</th>\n",
|
503 |
+
" <td>0</td>\n",
|
504 |
+
" <td>Rural</td>\n",
|
505 |
+
" <td>IntactFemale</td>\n",
|
506 |
+
" <td>0</td>\n",
|
507 |
+
" <td>18</td>\n",
|
508 |
+
" <td>0</td>\n",
|
509 |
+
" <td>5.9</td>\n",
|
510 |
+
" <td>14.4</td>\n",
|
511 |
+
" <td>6.5</td>\n",
|
512 |
+
" <td>390.0</td>\n",
|
513 |
+
" <td>130.0</td>\n",
|
514 |
+
" <td>2795.0</td>\n",
|
515 |
+
" <td>213.0</td>\n",
|
516 |
+
" <td>3185.0</td>\n",
|
517 |
+
" </tr>\n",
|
518 |
+
" </tbody>\n",
|
519 |
+
"</table>\n",
|
520 |
+
"</div>"
|
521 |
+
],
|
522 |
+
"text/plain": [
|
523 |
+
" SEX TYPEAREA SEX.REPRO REPRO.STATUS AGE PARASITE_STATUS RBC \\\n",
|
524 |
+
"0 1 Suburban IntactMale 0 9 0 6.4 \n",
|
525 |
+
"1 0 Rural NeuteredFemale 1 6 0 4.8 \n",
|
526 |
+
"2 1 Suburban IntactMale 0 14 0 6.2 \n",
|
527 |
+
"3 1 Rural IntactMale 0 6 0 5.4 \n",
|
528 |
+
"4 0 Rural IntactFemale 0 18 0 5.9 \n",
|
529 |
+
"\n",
|
530 |
+
" HGB WBC EOS.CNT MONO.CNT NUT.CNT PL.CNT LYMP.CNT \n",
|
531 |
+
"0 16.6 14.2 142.0 852.0 6390.0 210.0 6816.0 \n",
|
532 |
+
"1 12.5 10.0 400.0 300.0 4800.0 209.0 4500.0 \n",
|
533 |
+
"2 17.3 9.5 190.0 475.0 7315.0 164.0 1520.0 \n",
|
534 |
+
"3 13.8 14.1 1692.0 423.0 7755.0 254.0 4230.0 \n",
|
535 |
+
"4 14.4 6.5 390.0 130.0 2795.0 213.0 3185.0 "
|
536 |
+
]
|
537 |
+
},
|
538 |
+
"execution_count": 3,
|
539 |
+
"metadata": {},
|
540 |
+
"output_type": "execute_result"
|
541 |
+
}
|
542 |
+
],
|
543 |
+
"source": [
|
544 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
545 |
+
"le = LabelEncoder()\n",
|
546 |
+
"df2 = df.loc[:, df.columns != 'ID']\n",
|
547 |
+
"for x in ['SEX', 'REPRO.STATUS', 'PARASITE_STATUS']:\n",
|
548 |
+
" df2[x] = LabelEncoder().fit_transform(df2[x])\n",
|
549 |
+
"df2.head()"
|
550 |
+
]
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"cell_type": "code",
|
554 |
+
"execution_count": 4,
|
555 |
+
"metadata": {
|
556 |
+
"tags": []
|
557 |
+
},
|
558 |
+
"outputs": [
|
559 |
+
{
|
560 |
+
"data": {
|
561 |
+
"text/plain": [
|
562 |
+
"Index(['SEX', 'REPRO.STATUS', 'AGE', 'PARASITE_STATUS', 'TYPEAREA_Rural',\n",
|
563 |
+
" 'TYPEAREA_Suburban', 'TYPEAREA_Urban', 'SEX.REPRO_IntactFemale',\n",
|
564 |
+
" 'SEX.REPRO_IntactMale', 'SEX.REPRO_NeuteredFemale',\n",
|
565 |
+
" 'SEX.REPRO_NeuteredMale'],\n",
|
566 |
+
" dtype='object')"
|
567 |
+
]
|
568 |
+
},
|
569 |
+
"execution_count": 4,
|
570 |
+
"metadata": {},
|
571 |
+
"output_type": "execute_result"
|
572 |
+
}
|
573 |
+
],
|
574 |
+
"source": [
|
575 |
+
"df3 = pd.get_dummies(df2).dropna(how='any', axis=1)\n",
|
576 |
+
"df3.columns"
|
577 |
+
]
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"cell_type": "code",
|
581 |
+
"execution_count": 5,
|
582 |
+
"metadata": {
|
583 |
+
"tags": []
|
584 |
+
},
|
585 |
+
"outputs": [
|
586 |
+
{
|
587 |
+
"data": {
|
588 |
+
"text/html": [
|
589 |
+
"<div>\n",
|
590 |
+
"<style scoped>\n",
|
591 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
592 |
+
" vertical-align: middle;\n",
|
593 |
+
" }\n",
|
594 |
+
"\n",
|
595 |
+
" .dataframe tbody tr th {\n",
|
596 |
+
" vertical-align: top;\n",
|
597 |
+
" }\n",
|
598 |
+
"\n",
|
599 |
+
" .dataframe thead th {\n",
|
600 |
+
" text-align: right;\n",
|
601 |
+
" }\n",
|
602 |
+
"</style>\n",
|
603 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
604 |
+
" <thead>\n",
|
605 |
+
" <tr style=\"text-align: right;\">\n",
|
606 |
+
" <th></th>\n",
|
607 |
+
" <th>SEX</th>\n",
|
608 |
+
" <th>REPRO.STATUS</th>\n",
|
609 |
+
" <th>AGE</th>\n",
|
610 |
+
" <th>PARASITE_STATUS</th>\n",
|
611 |
+
" <th>TYPEAREA_Rural</th>\n",
|
612 |
+
" <th>TYPEAREA_Suburban</th>\n",
|
613 |
+
" <th>TYPEAREA_Urban</th>\n",
|
614 |
+
" <th>SEX.REPRO_IntactFemale</th>\n",
|
615 |
+
" <th>SEX.REPRO_IntactMale</th>\n",
|
616 |
+
" <th>SEX.REPRO_NeuteredFemale</th>\n",
|
617 |
+
" <th>SEX.REPRO_NeuteredMale</th>\n",
|
618 |
+
" </tr>\n",
|
619 |
+
" </thead>\n",
|
620 |
+
" <tbody>\n",
|
621 |
+
" <tr>\n",
|
622 |
+
" <th>0</th>\n",
|
623 |
+
" <td>1</td>\n",
|
624 |
+
" <td>0</td>\n",
|
625 |
+
" <td>9</td>\n",
|
626 |
+
" <td>0</td>\n",
|
627 |
+
" <td>0</td>\n",
|
628 |
+
" <td>1</td>\n",
|
629 |
+
" <td>0</td>\n",
|
630 |
+
" <td>0</td>\n",
|
631 |
+
" <td>1</td>\n",
|
632 |
+
" <td>0</td>\n",
|
633 |
+
" <td>0</td>\n",
|
634 |
+
" </tr>\n",
|
635 |
+
" <tr>\n",
|
636 |
+
" <th>1</th>\n",
|
637 |
+
" <td>0</td>\n",
|
638 |
+
" <td>1</td>\n",
|
639 |
+
" <td>6</td>\n",
|
640 |
+
" <td>0</td>\n",
|
641 |
+
" <td>1</td>\n",
|
642 |
+
" <td>0</td>\n",
|
643 |
+
" <td>0</td>\n",
|
644 |
+
" <td>0</td>\n",
|
645 |
+
" <td>0</td>\n",
|
646 |
+
" <td>1</td>\n",
|
647 |
+
" <td>0</td>\n",
|
648 |
+
" </tr>\n",
|
649 |
+
" <tr>\n",
|
650 |
+
" <th>2</th>\n",
|
651 |
+
" <td>1</td>\n",
|
652 |
+
" <td>0</td>\n",
|
653 |
+
" <td>14</td>\n",
|
654 |
+
" <td>0</td>\n",
|
655 |
+
" <td>0</td>\n",
|
656 |
+
" <td>1</td>\n",
|
657 |
+
" <td>0</td>\n",
|
658 |
+
" <td>0</td>\n",
|
659 |
+
" <td>1</td>\n",
|
660 |
+
" <td>0</td>\n",
|
661 |
+
" <td>0</td>\n",
|
662 |
+
" </tr>\n",
|
663 |
+
" <tr>\n",
|
664 |
+
" <th>3</th>\n",
|
665 |
+
" <td>1</td>\n",
|
666 |
+
" <td>0</td>\n",
|
667 |
+
" <td>6</td>\n",
|
668 |
+
" <td>0</td>\n",
|
669 |
+
" <td>1</td>\n",
|
670 |
+
" <td>0</td>\n",
|
671 |
+
" <td>0</td>\n",
|
672 |
+
" <td>0</td>\n",
|
673 |
+
" <td>1</td>\n",
|
674 |
+
" <td>0</td>\n",
|
675 |
+
" <td>0</td>\n",
|
676 |
+
" </tr>\n",
|
677 |
+
" <tr>\n",
|
678 |
+
" <th>4</th>\n",
|
679 |
+
" <td>0</td>\n",
|
680 |
+
" <td>0</td>\n",
|
681 |
+
" <td>18</td>\n",
|
682 |
+
" <td>0</td>\n",
|
683 |
+
" <td>1</td>\n",
|
684 |
+
" <td>0</td>\n",
|
685 |
+
" <td>0</td>\n",
|
686 |
+
" <td>1</td>\n",
|
687 |
+
" <td>0</td>\n",
|
688 |
+
" <td>0</td>\n",
|
689 |
+
" <td>0</td>\n",
|
690 |
+
" </tr>\n",
|
691 |
+
" </tbody>\n",
|
692 |
+
"</table>\n",
|
693 |
+
"</div>"
|
694 |
+
],
|
695 |
+
"text/plain": [
|
696 |
+
" SEX REPRO.STATUS AGE PARASITE_STATUS TYPEAREA_Rural TYPEAREA_Suburban \\\n",
|
697 |
+
"0 1 0 9 0 0 1 \n",
|
698 |
+
"1 0 1 6 0 1 0 \n",
|
699 |
+
"2 1 0 14 0 0 1 \n",
|
700 |
+
"3 1 0 6 0 1 0 \n",
|
701 |
+
"4 0 0 18 0 1 0 \n",
|
702 |
+
"\n",
|
703 |
+
" TYPEAREA_Urban SEX.REPRO_IntactFemale SEX.REPRO_IntactMale \\\n",
|
704 |
+
"0 0 0 1 \n",
|
705 |
+
"1 0 0 0 \n",
|
706 |
+
"2 0 0 1 \n",
|
707 |
+
"3 0 0 1 \n",
|
708 |
+
"4 0 1 0 \n",
|
709 |
+
"\n",
|
710 |
+
" SEX.REPRO_NeuteredFemale SEX.REPRO_NeuteredMale \n",
|
711 |
+
"0 0 0 \n",
|
712 |
+
"1 1 0 \n",
|
713 |
+
"2 0 0 \n",
|
714 |
+
"3 0 0 \n",
|
715 |
+
"4 0 0 "
|
716 |
+
]
|
717 |
+
},
|
718 |
+
"execution_count": 5,
|
719 |
+
"metadata": {},
|
720 |
+
"output_type": "execute_result"
|
721 |
+
}
|
722 |
+
],
|
723 |
+
"source": [
|
724 |
+
"df3.head()"
|
725 |
+
]
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"cell_type": "code",
|
729 |
+
"execution_count": 6,
|
730 |
+
"metadata": {
|
731 |
+
"tags": []
|
732 |
+
},
|
733 |
+
"outputs": [],
|
734 |
+
"source": [
|
735 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
736 |
+
"from sklearn.model_selection import train_test_split\n",
|
737 |
+
"X = df3.drop(['PARASITE_STATUS'], axis=1)\n",
|
738 |
+
"y = df3['PARASITE_STATUS']\n",
|
739 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)"
|
740 |
+
]
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"cell_type": "code",
|
744 |
+
"execution_count": 19,
|
745 |
+
"metadata": {
|
746 |
+
"tags": []
|
747 |
+
},
|
748 |
+
"outputs": [
|
749 |
+
{
|
750 |
+
"data": {
|
751 |
+
"text/html": [
|
752 |
+
"<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[('preprocessor', StandardScaler()),\n",
|
753 |
+
" ('classifier',\n",
|
754 |
+
" LogisticRegression(class_weight='balanced', max_iter=20000))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" ><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[('preprocessor', StandardScaler()),\n",
|
755 |
+
" ('classifier',\n",
|
756 |
+
" LogisticRegression(class_weight='balanced', max_iter=20000))])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-5\" type=\"checkbox\" ><label for=\"sk-estimator-id-5\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-6\" type=\"checkbox\" ><label for=\"sk-estimator-id-6\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">LogisticRegression</label><div class=\"sk-toggleable__content\"><pre>LogisticRegression(class_weight='balanced', max_iter=20000)</pre></div></div></div></div></div></div></div>"
|
757 |
+
],
|
758 |
+
"text/plain": [
|
759 |
+
"Pipeline(steps=[('preprocessor', StandardScaler()),\n",
|
760 |
+
" ('classifier',\n",
|
761 |
+
" LogisticRegression(class_weight='balanced', max_iter=20000))])"
|
762 |
+
]
|
763 |
+
},
|
764 |
+
"execution_count": 19,
|
765 |
+
"metadata": {},
|
766 |
+
"output_type": "execute_result"
|
767 |
+
}
|
768 |
+
],
|
769 |
+
"source": [
|
770 |
+
"from sklearn.pipeline import Pipeline #make_pipeline\n",
|
771 |
+
"from sklearn import preprocessing\n",
|
772 |
+
"\n",
|
773 |
+
"i = 20000\n",
|
774 |
+
"\n",
|
775 |
+
"pipe = Pipeline([\n",
|
776 |
+
" ('preprocessor', preprocessing.StandardScaler()),\n",
|
777 |
+
" ('classifier', LogisticRegression(max_iter=i, class_weight='balanced')),\n",
|
778 |
+
"])\n",
|
779 |
+
"\n",
|
780 |
+
"#model = LogisticRegression(penalty='l1', solver='saga', max_iter=i)\n",
|
781 |
+
"pipe.fit(X_train, y_train)"
|
782 |
+
]
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"cell_type": "code",
|
786 |
+
"execution_count": 32,
|
787 |
+
"metadata": {
|
788 |
+
"scrolled": true,
|
789 |
+
"tags": []
|
790 |
+
},
|
791 |
+
"outputs": [
|
792 |
+
{
|
793 |
+
"name": "stderr",
|
794 |
+
"output_type": "stream",
|
795 |
+
"text": [
|
796 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
797 |
+
" warnings.warn(\n",
|
798 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
799 |
+
" warnings.warn(\n",
|
800 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
801 |
+
" warnings.warn(\n",
|
802 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
803 |
+
" warnings.warn(\n",
|
804 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
805 |
+
" warnings.warn(\n",
|
806 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
807 |
+
" warnings.warn(\n",
|
808 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
809 |
+
" warnings.warn(\n",
|
810 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
811 |
+
" warnings.warn(\n",
|
812 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
813 |
+
" warnings.warn(\n",
|
814 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
815 |
+
" warnings.warn(\n",
|
816 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
817 |
+
" warnings.warn(\n",
|
818 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
819 |
+
" warnings.warn(\n",
|
820 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
821 |
+
" warnings.warn(\n",
|
822 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
823 |
+
" warnings.warn(\n",
|
824 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
825 |
+
" warnings.warn(\n",
|
826 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
827 |
+
" warnings.warn(\n",
|
828 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
829 |
+
" warnings.warn(\n",
|
830 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
831 |
+
" warnings.warn(\n",
|
832 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
833 |
+
" warnings.warn(\n",
|
834 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
835 |
+
" warnings.warn(\n",
|
836 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
837 |
+
" warnings.warn(\n",
|
838 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
839 |
+
" warnings.warn(\n",
|
840 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
841 |
+
" warnings.warn(\n",
|
842 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
843 |
+
" warnings.warn(\n",
|
844 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
845 |
+
" warnings.warn(\n",
|
846 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
847 |
+
" warnings.warn(\n",
|
848 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
849 |
+
" warnings.warn(\n",
|
850 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
851 |
+
" warnings.warn(\n",
|
852 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
853 |
+
" warnings.warn(\n",
|
854 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
855 |
+
" warnings.warn(\n",
|
856 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
857 |
+
" warnings.warn(\n",
|
858 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
859 |
+
" warnings.warn(\n",
|
860 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
861 |
+
" warnings.warn(\n",
|
862 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
863 |
+
" warnings.warn(\n",
|
864 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
865 |
+
" warnings.warn(\n",
|
866 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
867 |
+
" warnings.warn(\n",
|
868 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
869 |
+
" warnings.warn(\n",
|
870 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
871 |
+
" warnings.warn(\n",
|
872 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
873 |
+
" warnings.warn(\n",
|
874 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
875 |
+
" warnings.warn(\n",
|
876 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
877 |
+
" warnings.warn(\n",
|
878 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
879 |
+
" warnings.warn(\n",
|
880 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
881 |
+
" warnings.warn(\n",
|
882 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
883 |
+
" warnings.warn(\n",
|
884 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
885 |
+
" warnings.warn(\n",
|
886 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
887 |
+
" warnings.warn(\n",
|
888 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
889 |
+
" warnings.warn(\n",
|
890 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
891 |
+
" warnings.warn(\n",
|
892 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
893 |
+
" warnings.warn(\n",
|
894 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
895 |
+
" warnings.warn(\n",
|
896 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
897 |
+
" warnings.warn(\n",
|
898 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
899 |
+
" warnings.warn(\n",
|
900 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
901 |
+
" warnings.warn(\n",
|
902 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
903 |
+
" warnings.warn(\n",
|
904 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
905 |
+
" warnings.warn(\n",
|
906 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/model_selection/_validation.py:378: FitFailedWarning: \n",
|
907 |
+
"360 fits failed out of a total of 720.\n",
|
908 |
+
"The score on these train-test partitions for these parameters will be set to nan.\n",
|
909 |
+
"If these failures are not expected, you can try to debug them by setting error_score='raise'.\n",
|
910 |
+
"\n",
|
911 |
+
"Below are more details about the failures:\n",
|
912 |
+
"--------------------------------------------------------------------------------\n",
|
913 |
+
"360 fits failed with the following error:\n",
|
914 |
+
"Traceback (most recent call last):\n",
|
915 |
+
" File \"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/model_selection/_validation.py\", line 686, in _fit_and_score\n",
|
916 |
+
" estimator.fit(X_train, y_train, **fit_params)\n",
|
917 |
+
" File \"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/pipeline.py\", line 405, in fit\n",
|
918 |
+
" self._final_estimator.fit(Xt, y, **fit_params_last_step)\n",
|
919 |
+
" File \"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_logistic.py\", line 1162, in fit\n",
|
920 |
+
" solver = _check_solver(self.solver, self.penalty, self.dual)\n",
|
921 |
+
" File \"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/linear_model/_logistic.py\", line 54, in _check_solver\n",
|
922 |
+
" raise ValueError(\n",
|
923 |
+
"ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty.\n",
|
924 |
+
"\n",
|
925 |
+
" warnings.warn(some_fits_failed_message, FitFailedWarning)\n",
|
926 |
+
"/home/vagrant/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/model_selection/_search.py:952: UserWarning: One or more of the test scores are non-finite: [ nan 0. nan 0.1590493 nan 0.\n",
|
927 |
+
" nan 0. nan 0. nan 0.\n",
|
928 |
+
" nan 0. nan 0. nan 0.\n",
|
929 |
+
" nan 0.13518741 nan 0.13518741 nan 0.13518741\n",
|
930 |
+
" nan 0. nan 0.16160635 nan 0.\n",
|
931 |
+
" nan 0. nan 0. nan 0.\n",
|
932 |
+
" nan 0. nan 0. nan 0.18677466\n",
|
933 |
+
" nan 0.13518741 nan 0.13518741 nan 0.13518741\n",
|
934 |
+
" nan 0. nan 0.16000688 nan 0.\n",
|
935 |
+
" nan 0. nan 0. nan 0.\n",
|
936 |
+
" nan 0. nan 0. nan 0.1923046\n",
|
937 |
+
" nan 0.13081038 nan 0.13518741 nan 0.13518741\n",
|
938 |
+
" nan 0. nan 0.15892573 nan 0.\n",
|
939 |
+
" nan 0. nan 0. nan 0.\n",
|
940 |
+
" nan 0. nan 0. nan 0.1887408\n",
|
941 |
+
" nan 0.13485348 nan 0.13518741 nan 0.13518741\n",
|
942 |
+
" nan 0. nan 0.12777313 nan 0.\n",
|
943 |
+
" nan 0. nan 0. nan 0.\n",
|
944 |
+
" nan 0. nan 0. nan 0.15035704\n",
|
945 |
+
" nan 0.13619257 nan 0.13642988 nan 0.13518741\n",
|
946 |
+
" nan 0. nan 0.12412204 nan 0.\n",
|
947 |
+
" nan 0. nan 0. nan 0.\n",
|
948 |
+
" nan 0. nan 0. nan 0.11476747\n",
|
949 |
+
" nan 0.14715202 nan 0.13721419 nan 0.13550537]\n",
|
950 |
+
" warnings.warn(\n"
|
951 |
+
]
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"data": {
|
955 |
+
"text/plain": [
|
956 |
+
"{'classifier__C': 0.01,\n",
|
957 |
+
" 'classifier__class_weight': {0: 1, 1: 10},\n",
|
958 |
+
" 'classifier__penalty': 'l2',\n",
|
959 |
+
" 'classifier__solver': 'sag'}"
|
960 |
+
]
|
961 |
+
},
|
962 |
+
"execution_count": 32,
|
963 |
+
"metadata": {},
|
964 |
+
"output_type": "execute_result"
|
965 |
+
}
|
966 |
+
],
|
967 |
+
"source": [
|
968 |
+
"from sklearn.model_selection import GridSearchCV\n",
|
969 |
+
"import numpy as np\n",
|
970 |
+
"\n",
|
971 |
+
"\n",
|
972 |
+
"param_grid = {\n",
|
973 |
+
" 'classifier__penalty': ['l1', 'l2'],\n",
|
974 |
+
" 'classifier__C': [1e-4, 1e-3, 1e-2, 0.1, 1, 10],\n",
|
975 |
+
" 'classifier__solver': ['sag'],\n",
|
976 |
+
" 'classifier__class_weight': [None, 'balanced', *[{0: 1, 1:10**x} for x in range(-5, 5)]],\n",
|
977 |
+
" #'classifier__eta0': [10**x for x in range(-5, 5)],\n",
|
978 |
+
" #'classifier__batch_size': np.linspace(1, X_train.shape[0], 10, dtype=int),\n",
|
979 |
+
"}\n",
|
980 |
+
"\n",
|
981 |
+
"#grid_search = GridSearchCV(pipe, param_grid, cv=5, scoring='roc_auc')\n",
|
982 |
+
"grid_search = GridSearchCV(pipe, param_grid, cv=5, scoring='f1', n_jobs=-1)\n",
|
983 |
+
"\n",
|
984 |
+
"grid_search.fit(X_train, y_train)\n",
|
985 |
+
"grid_search.best_params_"
|
986 |
+
]
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"cell_type": "code",
|
990 |
+
"execution_count": 35,
|
991 |
+
"metadata": {
|
992 |
+
"tags": []
|
993 |
+
},
|
994 |
+
"outputs": [
|
995 |
+
{
|
996 |
+
"data": {
|
997 |
+
"text/plain": [
|
998 |
+
"0.05732484076433121"
|
999 |
+
]
|
1000 |
+
},
|
1001 |
+
"execution_count": 35,
|
1002 |
+
"metadata": {},
|
1003 |
+
"output_type": "execute_result"
|
1004 |
+
}
|
1005 |
+
],
|
1006 |
+
"source": [
|
1007 |
+
"from sklearn.metrics import precision_score, recall_score, f1_score\n",
|
1008 |
+
"from sklearn.metrics import confusion_matrix\n",
|
1009 |
+
"\n",
|
1010 |
+
"y_pred = grid_search.predict(X_test)\n",
|
1011 |
+
"precision = precision_score(y_test, y_pred)\n",
|
1012 |
+
"precision"
|
1013 |
+
]
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"cell_type": "code",
|
1017 |
+
"execution_count": 36,
|
1018 |
+
"metadata": {
|
1019 |
+
"tags": []
|
1020 |
+
},
|
1021 |
+
"outputs": [
|
1022 |
+
{
|
1023 |
+
"data": {
|
1024 |
+
"text/plain": [
|
1025 |
+
"array([[ 27, 148],\n",
|
1026 |
+
" [420, 9]])"
|
1027 |
+
]
|
1028 |
+
},
|
1029 |
+
"execution_count": 36,
|
1030 |
+
"metadata": {},
|
1031 |
+
"output_type": "execute_result"
|
1032 |
+
}
|
1033 |
+
],
|
1034 |
+
"source": [
|
1035 |
+
"confusion_matrix(y_pred == y_test, y_pred)"
|
1036 |
+
]
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"cell_type": "code",
|
1040 |
+
"execution_count": 11,
|
1041 |
+
"metadata": {
|
1042 |
+
"tags": []
|
1043 |
+
},
|
1044 |
+
"outputs": [
|
1045 |
+
{
|
1046 |
+
"data": {
|
1047 |
+
"text/plain": [
|
1048 |
+
"\u001b[0;31mSignature:\u001b[0m\n",
|
1049 |
+
"\u001b[0mconfusion_matrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n",
|
1050 |
+
"\u001b[0;34m\u001b[0m \u001b[0my_true\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
1051 |
+
"\u001b[0;34m\u001b[0m \u001b[0my_pred\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
1052 |
+
"\u001b[0;34m\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
1053 |
+
"\u001b[0;34m\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
1054 |
+
"\u001b[0;34m\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
1055 |
+
"\u001b[0;34m\u001b[0m \u001b[0mnormalize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
1056 |
+
"\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1057 |
+
"\u001b[0;31mDocstring:\u001b[0m\n",
|
1058 |
+
"Compute confusion matrix to evaluate the accuracy of a classification.\n",
|
1059 |
+
"\n",
|
1060 |
+
"By definition a confusion matrix :math:`C` is such that :math:`C_{i, j}`\n",
|
1061 |
+
"is equal to the number of observations known to be in group :math:`i` and\n",
|
1062 |
+
"predicted to be in group :math:`j`.\n",
|
1063 |
+
"\n",
|
1064 |
+
"Thus in binary classification, the count of true negatives is\n",
|
1065 |
+
":math:`C_{0,0}`, false negatives is :math:`C_{1,0}`, true positives is\n",
|
1066 |
+
":math:`C_{1,1}` and false positives is :math:`C_{0,1}`.\n",
|
1067 |
+
"\n",
|
1068 |
+
"Read more in the :ref:`User Guide <confusion_matrix>`.\n",
|
1069 |
+
"\n",
|
1070 |
+
"Parameters\n",
|
1071 |
+
"----------\n",
|
1072 |
+
"y_true : array-like of shape (n_samples,)\n",
|
1073 |
+
" Ground truth (correct) target values.\n",
|
1074 |
+
"\n",
|
1075 |
+
"y_pred : array-like of shape (n_samples,)\n",
|
1076 |
+
" Estimated targets as returned by a classifier.\n",
|
1077 |
+
"\n",
|
1078 |
+
"labels : array-like of shape (n_classes), default=None\n",
|
1079 |
+
" List of labels to index the matrix. This may be used to reorder\n",
|
1080 |
+
" or select a subset of labels.\n",
|
1081 |
+
" If ``None`` is given, those that appear at least once\n",
|
1082 |
+
" in ``y_true`` or ``y_pred`` are used in sorted order.\n",
|
1083 |
+
"\n",
|
1084 |
+
"sample_weight : array-like of shape (n_samples,), default=None\n",
|
1085 |
+
" Sample weights.\n",
|
1086 |
+
"\n",
|
1087 |
+
" .. versionadded:: 0.18\n",
|
1088 |
+
"\n",
|
1089 |
+
"normalize : {'true', 'pred', 'all'}, default=None\n",
|
1090 |
+
" Normalizes confusion matrix over the true (rows), predicted (columns)\n",
|
1091 |
+
" conditions or all the population. If None, confusion matrix will not be\n",
|
1092 |
+
" normalized.\n",
|
1093 |
+
"\n",
|
1094 |
+
"Returns\n",
|
1095 |
+
"-------\n",
|
1096 |
+
"C : ndarray of shape (n_classes, n_classes)\n",
|
1097 |
+
" Confusion matrix whose i-th row and j-th\n",
|
1098 |
+
" column entry indicates the number of\n",
|
1099 |
+
" samples with true label being i-th class\n",
|
1100 |
+
" and predicted label being j-th class.\n",
|
1101 |
+
"\n",
|
1102 |
+
"See Also\n",
|
1103 |
+
"--------\n",
|
1104 |
+
"ConfusionMatrixDisplay.from_estimator : Plot the confusion matrix\n",
|
1105 |
+
" given an estimator, the data, and the label.\n",
|
1106 |
+
"ConfusionMatrixDisplay.from_predictions : Plot the confusion matrix\n",
|
1107 |
+
" given the true and predicted labels.\n",
|
1108 |
+
"ConfusionMatrixDisplay : Confusion Matrix visualization.\n",
|
1109 |
+
"\n",
|
1110 |
+
"References\n",
|
1111 |
+
"----------\n",
|
1112 |
+
".. [1] `Wikipedia entry for the Confusion matrix\n",
|
1113 |
+
" <https://en.wikipedia.org/wiki/Confusion_matrix>`_\n",
|
1114 |
+
" (Wikipedia and other references may use a different\n",
|
1115 |
+
" convention for axes).\n",
|
1116 |
+
"\n",
|
1117 |
+
"Examples\n",
|
1118 |
+
"--------\n",
|
1119 |
+
">>> from sklearn.metrics import confusion_matrix\n",
|
1120 |
+
">>> y_true = [2, 0, 2, 2, 0, 1]\n",
|
1121 |
+
">>> y_pred = [0, 0, 2, 2, 0, 2]\n",
|
1122 |
+
">>> confusion_matrix(y_true, y_pred)\n",
|
1123 |
+
"array([[2, 0, 0],\n",
|
1124 |
+
" [0, 0, 1],\n",
|
1125 |
+
" [1, 0, 2]])\n",
|
1126 |
+
"\n",
|
1127 |
+
">>> y_true = [\"cat\", \"ant\", \"cat\", \"cat\", \"ant\", \"bird\"]\n",
|
1128 |
+
">>> y_pred = [\"ant\", \"ant\", \"cat\", \"cat\", \"ant\", \"cat\"]\n",
|
1129 |
+
">>> confusion_matrix(y_true, y_pred, labels=[\"ant\", \"bird\", \"cat\"])\n",
|
1130 |
+
"array([[2, 0, 0],\n",
|
1131 |
+
" [0, 0, 1],\n",
|
1132 |
+
" [1, 0, 2]])\n",
|
1133 |
+
"\n",
|
1134 |
+
"In the binary case, we can extract true positives, etc as follows:\n",
|
1135 |
+
"\n",
|
1136 |
+
">>> tn, fp, fn, tp = confusion_matrix([0, 1, 0, 1], [1, 1, 1, 0]).ravel()\n",
|
1137 |
+
">>> (tn, fp, fn, tp)\n",
|
1138 |
+
"(0, 2, 1, 1)\n",
|
1139 |
+
"\u001b[0;31mFile:\u001b[0m ~/.local/share/virtualenvs/midterm-5qaZhyTt/lib/python3.10/site-packages/sklearn/metrics/_classification.py\n",
|
1140 |
+
"\u001b[0;31mType:\u001b[0m function"
|
1141 |
+
]
|
1142 |
+
},
|
1143 |
+
"metadata": {},
|
1144 |
+
"output_type": "display_data"
|
1145 |
+
}
|
1146 |
+
],
|
1147 |
+
"source": [
|
1148 |
+
"confusion_matrix?"
|
1149 |
+
]
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"cell_type": "code",
|
1153 |
+
"execution_count": 56,
|
1154 |
+
"metadata": {
|
1155 |
+
"tags": []
|
1156 |
+
},
|
1157 |
+
"outputs": [
|
1158 |
+
{
|
1159 |
+
"data": {
|
1160 |
+
"text/plain": [
|
1161 |
+
"array([0.93046358, 0.93046358, 0.92880795, 0.93034826, 0.93034826])"
|
1162 |
+
]
|
1163 |
+
},
|
1164 |
+
"execution_count": 56,
|
1165 |
+
"metadata": {},
|
1166 |
+
"output_type": "execute_result"
|
1167 |
+
}
|
1168 |
+
],
|
1169 |
+
"source": [
|
1170 |
+
"from sklearn.model_selection import cross_val_score\n",
|
1171 |
+
"\n",
|
1172 |
+
"scores = cross_val_score(pipe, X, y, cv=5)\n",
|
1173 |
+
"scores"
|
1174 |
+
]
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"cell_type": "code",
|
1178 |
+
"execution_count": 12,
|
1179 |
+
"metadata": {
|
1180 |
+
"tags": []
|
1181 |
+
},
|
1182 |
+
"outputs": [
|
1183 |
+
{
|
1184 |
+
"data": {
|
1185 |
+
"text/plain": [
|
1186 |
+
"{'memory': None,\n",
|
1187 |
+
" 'steps': [('preprocessor', StandardScaler()),\n",
|
1188 |
+
" ('classifier', LogisticRegression(class_weight='balanced', max_iter=200))],\n",
|
1189 |
+
" 'verbose': False,\n",
|
1190 |
+
" 'preprocessor': StandardScaler(),\n",
|
1191 |
+
" 'classifier': LogisticRegression(class_weight='balanced', max_iter=200),\n",
|
1192 |
+
" 'preprocessor__copy': True,\n",
|
1193 |
+
" 'preprocessor__with_mean': True,\n",
|
1194 |
+
" 'preprocessor__with_std': True,\n",
|
1195 |
+
" 'classifier__C': 1.0,\n",
|
1196 |
+
" 'classifier__class_weight': 'balanced',\n",
|
1197 |
+
" 'classifier__dual': False,\n",
|
1198 |
+
" 'classifier__fit_intercept': True,\n",
|
1199 |
+
" 'classifier__intercept_scaling': 1,\n",
|
1200 |
+
" 'classifier__l1_ratio': None,\n",
|
1201 |
+
" 'classifier__max_iter': 200,\n",
|
1202 |
+
" 'classifier__multi_class': 'auto',\n",
|
1203 |
+
" 'classifier__n_jobs': None,\n",
|
1204 |
+
" 'classifier__penalty': 'l2',\n",
|
1205 |
+
" 'classifier__random_state': None,\n",
|
1206 |
+
" 'classifier__solver': 'lbfgs',\n",
|
1207 |
+
" 'classifier__tol': 0.0001,\n",
|
1208 |
+
" 'classifier__verbose': 0,\n",
|
1209 |
+
" 'classifier__warm_start': False}"
|
1210 |
+
]
|
1211 |
+
},
|
1212 |
+
"execution_count": 12,
|
1213 |
+
"metadata": {},
|
1214 |
+
"output_type": "execute_result"
|
1215 |
+
}
|
1216 |
+
],
|
1217 |
+
"source": [
|
1218 |
+
"pipe.get_params()"
|
1219 |
+
]
|
1220 |
+
},
|
1221 |
+
{
|
1222 |
+
"cell_type": "code",
|
1223 |
+
"execution_count": null,
|
1224 |
+
"metadata": {},
|
1225 |
+
"outputs": [],
|
1226 |
+
"source": []
|
1227 |
+
}
|
1228 |
+
],
|
1229 |
+
"metadata": {
|
1230 |
+
"colab": {
|
1231 |
+
"provenance": []
|
1232 |
+
},
|
1233 |
+
"kernelspec": {
|
1234 |
+
"display_name": "Python 3 (ipykernel)",
|
1235 |
+
"language": "python",
|
1236 |
+
"name": "python3"
|
1237 |
+
},
|
1238 |
+
"language_info": {
|
1239 |
+
"codemirror_mode": {
|
1240 |
+
"name": "ipython",
|
1241 |
+
"version": 3
|
1242 |
+
},
|
1243 |
+
"file_extension": ".py",
|
1244 |
+
"mimetype": "text/x-python",
|
1245 |
+
"name": "python",
|
1246 |
+
"nbconvert_exporter": "python",
|
1247 |
+
"pygments_lexer": "ipython3",
|
1248 |
+
"version": "3.10.4"
|
1249 |
+
},
|
1250 |
+
"vscode": {
|
1251 |
+
"interpreter": {
|
1252 |
+
"hash": "62556f7a043365a66e0918c892755cfafede529a87e97207556f006a109bade4"
|
1253 |
+
}
|
1254 |
+
}
|
1255 |
+
},
|
1256 |
+
"nbformat": 4,
|
1257 |
+
"nbformat_minor": 4
|
1258 |
+
}
|
midterm/pyproject.toml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "midterm"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
+
authors = ["Your Name <[email protected]>"]
|
6 |
+
readme = "README.md"
|
7 |
+
|
8 |
+
[tool.poetry.dependencies]
|
9 |
+
python = "^3.10"
|
10 |
+
black = "^23.1.0"
|
11 |
+
jupyterlab = "^3.6.1"
|
12 |
+
ipython = "^8.10.0"
|
13 |
+
numpy = "^1.24.2"
|
14 |
+
pandas = "^1.5.3"
|
15 |
+
jax = "^0.4.4"
|
16 |
+
seaborn = "^0.12.2"
|
17 |
+
matplotlib = "^3.7.0"
|
18 |
+
|
19 |
+
|
20 |
+
[build-system]
|
21 |
+
requires = ["poetry-core"]
|
22 |
+
build-backend = "poetry.core.masonry.api"
|
midterm/tests/__init__.py
ADDED
File without changes
|