File size: 4,440 Bytes
3e60e91
 
 
 
 
 
 
 
 
9c62372
 
a81ff23
 
7a1124b
ebca3e9
3e60e91
3b59cf8
 
b71edf1
3e60e91
 
 
e5857ea
3e60e91
 
9c2cf20
 
3b59cf8
c329828
d16f678
3e60e91
 
 
 
 
d92c861
9c62372
d92c861
 
 
 
 
 
 
9c62372
3e60e91
 
 
 
 
 
 
 
 
3b59cf8
3e60e91
3b59cf8
3e60e91
 
3b59cf8
3e60e91
 
 
3b59cf8
3e60e91
 
3b59cf8
 
3e60e91
 
 
 
44ef745
3e60e91
 
 
 
44ef745
9c62372
3e60e91
 
 
 
44ef745
3e60e91
 
44ef745
3e60e91
 
 
 
 
 
 
 
 
 
44ef745
3e60e91
 
e7eb65e
3e60e91
 
 
 
 
 
7cbd08f
 
0c297c9
3dd9fb6
3073dc0
11868da
7cbd08f
e5857ea
7cbd08f
 
e5857ea
 
 
 
3e60e91
 
 
 
 
 
 
 
 
a81ff23
3e60e91
 
44ef745
9c62372
3e60e91
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
try: from pip._internal.operations import freeze
except ImportError: # pip < 10.0
    from pip.operations import freeze

pkgs = freeze.freeze()
for pkg in pkgs: print(pkg)
import os 
import uvicorn
from fastapi import FastAPI, HTTPException, File, UploadFile,Query
from fastapi.middleware.cors import CORSMiddleware
from PyPDF2 import PdfReader
import google.generativeai as genai
import json
from PIL import Image
import io
import requests
import fitz  # PyMuPDF
import os


from dotenv import load_dotenv
# Load the environment variables from the .env file
load_dotenv()

# Configure Gemini API
secret = os.environ["GEMINI"]
genai.configure(api_key=secret)
model_vision = genai.GenerativeModel('gemini-1.5-flash')
model_text = genai.GenerativeModel('gemini-1.5-pro-latest')






app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)





def vision(file_content):
    # Open the PDF
    pdf_document = fitz.open("pdf",file_content)
    gemini_input = ["extract the whole text"]
    # Iterate through the pages
    for page_num in range(len(pdf_document)):
        # Select the page
        page = pdf_document.load_page(page_num)
        
        # Render the page to a pixmap (image)
        pix = page.get_pixmap()
        print(type(pix))
        
        # Convert the pixmap to bytes
        img_bytes = pix.tobytes("png")
        
        # Convert bytes to a PIL Image
        img = Image.open(io.BytesIO(img_bytes))
        gemini_input.append(img)
        # # Save the image if needed
        # img.save(f'page_{page_num + 1}.png')
    
    print("PDF pages converted to images successfully!")
    
    # Now you can pass the PIL image to the model_vision
    response = model_vision.generate_content(gemini_input).text
    return response


@app.post("/get_ocr_data/")
def get_data(input_file: UploadFile = File(...)):
    #try:
        # Determine the file type by reading the first few bytes
        file_content = input_file.file.read()
        file_type = input_file.content_type
        
        text = ""

        if file_type == "application/pdf":
                # Read PDF file using PyPDF2
                pdf_reader = PdfReader(io.BytesIO(file_content))
                for page in pdf_reader.pages:
                    text += page.extract_text()
                    
                if len(text)<10:
                   print("vision called")
                   text = vision(file_content)
        else:
            raise HTTPException(status_code=400, detail="Unsupported file type")
        
        

        # Call Gemini (or another model) to extract required data
        prompt = f"""This is CV data: {text.strip()} 
                IMPORTANT: The output should be a JSON array! Make Sure the JSON is valid.
                                                                  
                Example Output:
                [
                    "firstname" : "firstname",
                    "lastname" : "lastname",
                    "email" : "email",
                    "contact_number" : "contact number",
                    "home_address" : "full home address",
                    "home_town" : "home town or city",
                    "total_years_of_experience" : "total years of experience",
                    "education": "Institution Name, Degree Name",
                    "LinkedIn_link" : "LinkedIn link",
                    "experience" : "experience",
                    "industry": "industry of work",
                    "skills" : skills(Identify and list specific skills mentioned in both the skills section and inferred from the experience section),
                    "positions": [ "Job title 1", "Job title 2", "Job title 3" ],
                    "summary": "Generate a summary of the CV, including key qualifications, notable experiences, and relevant skills."
                    
                    
                    
                    
                    
                    
                ]
                """
        
        response = model_text.generate_content(prompt)
        print(response.text)
        data = json.loads(response.text.replace("JSON", "").replace("json", "").replace("```", ""))
        return {"data": data}

    #except Exception as e:
        #raise HTTPException(status_code=500, detail=f"Error processing file: {str(e)}")