File size: 6,453 Bytes
0389f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e5178
0389f9b
 
1bfa2d2
 
0389f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from datasets import load_dataset
from datasets import Dataset
from sentence_transformers import SentenceTransformer
import faiss
import time
import json
#import torch
import pandas as pd
from llama_cpp import Llama
#from langchain_community.llms import LlamaCpp
from threading import Thread
from huggingface_hub import Repository, upload_file
import os


HF_TOKEN = os.getenv('HF_Token')
#Log_Path="./Logfolder"
logfile = 'DiabetesChatLog.txt'
historylog = [{
        "Prompt": '',
        "Output": ''
}]

data = load_dataset("Namitg02/Test", split='train', streaming=False)
#Returns a list of dictionaries, each representing a row in the dataset.
length = len(data)

embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
embedding_dim = embedding_model.get_sentence_embedding_dimension()
# Returns dimensions of embedidng


index =  faiss.IndexFlatL2(embedding_dim)
data.add_faiss_index("embeddings", custom_index=index) 
# adds an index column for the embeddings

#question = "How can I reverse Diabetes?"

SYS_PROMPT = """You are an assistant for answering questions.
You are given the extracted parts of documents and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer. Don't repeat the SYS_PROMPT."""
# Provides context of how to answer the question

#llm_model = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF", tinyllama-1.1b-chat-v1.0.Q5_K_M.gguf
# TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF , TinyLlama/TinyLlama-1.1B-Chat-v0.6, andrijdavid/TinyLlama-1.1B-Chat-v1.0-GGUF"

model = Llama(
    model_path="./llama-2-7b-chat.Q4_K_M.gguf",
 #   chat_format="llama-2",
    n_gpu_layers = 0,
    temperature=0.75,
    n_ctx = 4096,
    max_tokens=500,
    top_p=0.95 #,
 #   eos_tokens=terminators
    # callback_manager=callback_manager,
    # verbose=True,  # Verbose is required to pass to the callback manager
    )
#initiate model and tokenizer
                        
def search(query: str, k: int = 2 ):
    """a function that embeds a new query and returns the most probable results"""
    embedded_query = embedding_model.encode(query) # create embedding of a new query
    scores, retrieved_examples = data.get_nearest_examples( # retrieve results
        "embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
        k=k # get only top k results
    )
    return scores, retrieved_examples
# returns scores (List[float]): the retrieval scores from either FAISS (IndexFlatL2 by default) and examples (dict) format
# called by talk function that passes prompt

def format_prompt(prompt,retrieved_documents,k,history,memory_limit=3):
    """using the retrieved documents we will prompt the model to generate our responses"""   
    PROMPT = f"Question:{prompt}\nContext:"
    for idx in range(k) :
        PROMPT+= f"{retrieved_documents['0'][idx]}\n"
    print("historyinfo")
    print(history)
    if len(history) == 0:
        return PROMPT
    
    if len(history) > memory_limit:
        history = history[-memory_limit:]
    
    print("checkwohist")
#    PROMPT = PROMPT + f"{history[0][0]} [/INST] {history[0][1]} </s>"
#    print("checkwthhist")
#    print(PROMPT)
    # Handle conversation history
    for user_message, bot_message in history[0:]:
        PROMPT += f"<s>[INST] {user_message} [/INST] {bot_message} </s>"
    print("checkwthhist2")
    print(PROMPT)
    return PROMPT


# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string that are retreived

def talk(prompt, history):
    k = 2 # number of retrieved documents
    scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the prompt passed
    print(retrieved_documents.keys())
#    print("check4")
    formatted_prompt = format_prompt(prompt,retrieved_documents,k,history,memory_limit=3) # create a new prompt using the retrieved documents
    print("check5")
    pd.options.display.max_colwidth = 4000
#    print(retrieved_documents['0'])
#    print(formatted_prompt)
  #  formatted_prompt_with_history = add_history(formatted_prompt, history)

   # formatted_prompt_with_history = formatted_prompt_with_history[:600] # to avoid memory issue
#    print(formatted_prompt_with_history)
    messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]  
    print(messages)
    # binding the system context and new prompt for LLM
    # the chat template structure should be based on text generation model format
    print("check 6")

# indicates the end of a sequence
#    stream = model.create_chat_completion(messages = messages, max_tokens=1000, stop=["</s>"], stream=False)
    stream = model.create_chat_completion(messages = messages, stream=False)
#    print(f"{stream}")
    print("check 7")
    print(stream['choices'][0]['message']['content'])
    return(stream['choices'][0]['message']['content'])
#    text = ""
#    for output in stream:
#       text += output['choices'][0]['message']['content']  
#       print(f"{output}")
#       print("check3H")
#       print(text)
#       yield text 
 
    
    
    # calling the model to generate response based on message/ input
    # do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
    # temperature controls randomness. more renadomness with higher temperature
    # only the tokens comprising the top_p probability mass are considered for responses
    # This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary.
 

    
TITLE = "AI Copilot for Diabetes Patients"

DESCRIPTION = "I provide answers to concerns related to Diabetes"

import gradio as gr
# Design chatbot
demo = gr.ChatInterface(
    fn=talk,
    chatbot=gr.Chatbot(
        show_label=True,
        show_share_button=True,
        show_copy_button=True,
        likeable=True,
        layout="bubble",
        bubble_full_width=False,
    ),
    theme="Soft",
    examples=[["what is Diabetes?"]],
    title=TITLE,
    description=DESCRIPTION,
)
# launch chatbot and calls the talk function which in turn calls other functions
print("check14")
#print(historylog)
#memory_panda = pd.DataFrame(historylog)
#Logfile = Dataset.from_pandas(memory_panda)
#Logfile.push_to_hub("Namitg02/Logfile",token = HF_TOKEN)
demo.launch()