Spaces:
Runtime error
Runtime error
File size: 6,453 Bytes
0389f9b f4e5178 0389f9b 1bfa2d2 0389f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
from datasets import load_dataset
from datasets import Dataset
from sentence_transformers import SentenceTransformer
import faiss
import time
import json
#import torch
import pandas as pd
from llama_cpp import Llama
#from langchain_community.llms import LlamaCpp
from threading import Thread
from huggingface_hub import Repository, upload_file
import os
HF_TOKEN = os.getenv('HF_Token')
#Log_Path="./Logfolder"
logfile = 'DiabetesChatLog.txt'
historylog = [{
"Prompt": '',
"Output": ''
}]
data = load_dataset("Namitg02/Test", split='train', streaming=False)
#Returns a list of dictionaries, each representing a row in the dataset.
length = len(data)
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
embedding_dim = embedding_model.get_sentence_embedding_dimension()
# Returns dimensions of embedidng
index = faiss.IndexFlatL2(embedding_dim)
data.add_faiss_index("embeddings", custom_index=index)
# adds an index column for the embeddings
#question = "How can I reverse Diabetes?"
SYS_PROMPT = """You are an assistant for answering questions.
You are given the extracted parts of documents and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer. Don't repeat the SYS_PROMPT."""
# Provides context of how to answer the question
#llm_model = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF", tinyllama-1.1b-chat-v1.0.Q5_K_M.gguf
# TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF , TinyLlama/TinyLlama-1.1B-Chat-v0.6, andrijdavid/TinyLlama-1.1B-Chat-v1.0-GGUF"
model = Llama(
model_path="./llama-2-7b-chat.Q4_K_M.gguf",
# chat_format="llama-2",
n_gpu_layers = 0,
temperature=0.75,
n_ctx = 4096,
max_tokens=500,
top_p=0.95 #,
# eos_tokens=terminators
# callback_manager=callback_manager,
# verbose=True, # Verbose is required to pass to the callback manager
)
#initiate model and tokenizer
def search(query: str, k: int = 2 ):
"""a function that embeds a new query and returns the most probable results"""
embedded_query = embedding_model.encode(query) # create embedding of a new query
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
k=k # get only top k results
)
return scores, retrieved_examples
# returns scores (List[float]): the retrieval scores from either FAISS (IndexFlatL2 by default) and examples (dict) format
# called by talk function that passes prompt
def format_prompt(prompt,retrieved_documents,k,history,memory_limit=3):
"""using the retrieved documents we will prompt the model to generate our responses"""
PROMPT = f"Question:{prompt}\nContext:"
for idx in range(k) :
PROMPT+= f"{retrieved_documents['0'][idx]}\n"
print("historyinfo")
print(history)
if len(history) == 0:
return PROMPT
if len(history) > memory_limit:
history = history[-memory_limit:]
print("checkwohist")
# PROMPT = PROMPT + f"{history[0][0]} [/INST] {history[0][1]} </s>"
# print("checkwthhist")
# print(PROMPT)
# Handle conversation history
for user_message, bot_message in history[0:]:
PROMPT += f"<s>[INST] {user_message} [/INST] {bot_message} </s>"
print("checkwthhist2")
print(PROMPT)
return PROMPT
# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string that are retreived
def talk(prompt, history):
k = 2 # number of retrieved documents
scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the prompt passed
print(retrieved_documents.keys())
# print("check4")
formatted_prompt = format_prompt(prompt,retrieved_documents,k,history,memory_limit=3) # create a new prompt using the retrieved documents
print("check5")
pd.options.display.max_colwidth = 4000
# print(retrieved_documents['0'])
# print(formatted_prompt)
# formatted_prompt_with_history = add_history(formatted_prompt, history)
# formatted_prompt_with_history = formatted_prompt_with_history[:600] # to avoid memory issue
# print(formatted_prompt_with_history)
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
print(messages)
# binding the system context and new prompt for LLM
# the chat template structure should be based on text generation model format
print("check 6")
# indicates the end of a sequence
# stream = model.create_chat_completion(messages = messages, max_tokens=1000, stop=["</s>"], stream=False)
stream = model.create_chat_completion(messages = messages, stream=False)
# print(f"{stream}")
print("check 7")
print(stream['choices'][0]['message']['content'])
return(stream['choices'][0]['message']['content'])
# text = ""
# for output in stream:
# text += output['choices'][0]['message']['content']
# print(f"{output}")
# print("check3H")
# print(text)
# yield text
# calling the model to generate response based on message/ input
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
# temperature controls randomness. more renadomness with higher temperature
# only the tokens comprising the top_p probability mass are considered for responses
# This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary.
TITLE = "AI Copilot for Diabetes Patients"
DESCRIPTION = "I provide answers to concerns related to Diabetes"
import gradio as gr
# Design chatbot
demo = gr.ChatInterface(
fn=talk,
chatbot=gr.Chatbot(
show_label=True,
show_share_button=True,
show_copy_button=True,
likeable=True,
layout="bubble",
bubble_full_width=False,
),
theme="Soft",
examples=[["what is Diabetes?"]],
title=TITLE,
description=DESCRIPTION,
)
# launch chatbot and calls the talk function which in turn calls other functions
print("check14")
#print(historylog)
#memory_panda = pd.DataFrame(historylog)
#Logfile = Dataset.from_pandas(memory_panda)
#Logfile.push_to_hub("Namitg02/Logfile",token = HF_TOKEN)
demo.launch() |