OCR / app.py
NafishZaldinanda's picture
Update app.py
1c490f2 verified
from pdf2image import convert_from_path
from PIL import Image
from pathlib import Path
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from pydantic import BaseModel, Field, ValidationError, root_validator, validator
from typing import List, Optional, Literal
import gradio as gr
import tempfile
import os
import json
import numpy as np
import re
import torch
import torchvision.transforms as T
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
device = torch.device('cpu')
path = "./model"
model = AutoModel.from_pretrained(
path,
low_cpu_mem_usage=True,
trust_remote_code=True).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(str(path), trust_remote_code=True, use_fast=False)
def convert_pdf_to_images(pdf_path):
images = convert_from_path(pdf_path)
temp_file_paths = []
for i, image in enumerate(images):
with tempfile.NamedTemporaryFile(delete=False, suffix=f'_{i+1}.png', mode='wb') as temp_file:
temp_path = temp_file.name
image.save(temp_path, format='PNG')
temp_file_paths.append(temp_path)
return temp_file_paths
def images_to_pixel_values(image_paths, device):
image_paths.sort(key=lambda x: int(os.path.splitext(os.path.basename(x))[0].split('_')[-1]))
pixel_values_list = [load_image(img_path, max_num=12).to(device) for img_path in image_paths]
return torch.cat(pixel_values_list, dim=0)
def process_file(file, file_type, file_document):
if file_type == "PDF":
try:
images = convert_pdf_to_images(file.name)
pixel_values = images_to_pixel_values(images, device)
if file_document == "Receipt":
question = '''
<image> You are a document processing model. This is a purchase receipt. If multiple images are provided, treat them as a single document and combine their content for processing. Extract and label the following entities from the given image, providing the output in JSON format. The values must only include text found in the document image. Use null or [] for missing entity types.
{ "type": "object", "properties": { "document_type": { "type": "string", "enum": ["purchase_receipt"] }, "data": { "type": "object", "properties": { "receipt_number": { "type": "string" }, "vendor_name": { "type": "string" }, "customer_name": { "type": "string" }, "items": { "type": "array", "items": { "type": "object", "properties": { "description": { "type": "string" }, "quantity": { "type": "integer", "nullable": true }, "unit_price": { "type": "string" }, "total_price": { "type": "string" } }, "required": ["description", "quantity", "unit_price", "total_price"] } }, "total_amount": { "type": "string" } }, "required": ["receipt_number", "vendor_name", "customer_name", "items", "total_amount"] } }, "required": ["document_type", "data"] }
'''
generation_config = dict(num_beams=1,
max_new_tokens=4096,
do_sample=True,
temperature=0.2,
repetition_penalty=1.1,
top_p=0.7)
response = model.chat(tokenizer, pixel_values, question, generation_config)
elif file_document == "Invoice":
question = '''
<image> You are a document processing model. This is an invoice. If multiple images are provided, treat them as a single document and combine their content for processing. Extract and label the following entities from the given image, providing the output in JSON format. The values must only include text found in the document image. Use null or [] for missing entity types.
{ "type": "object", "properties": { "document_type": { "type": "string", "enum": ["invoice"] }, "data": { "type": "object", "properties": { "invoice_number": { "type": "string" }, "vendor_name": { "type": "string" }, "customer_name": { "type": "string" }, "items": { "type": "array", "items": { "type": "object", "properties": { "description": { "type": "string" }, "quantity": { "type": "integer", "nullable": true }, "unit_price": { "type": "string" }, "total_price": { "type": "string" } }, "required": ["description", "quantity", "unit_price", "total_price"] } }, "subtotal": { "type": "string" }, "tax": { "type": "string" }, "total_amount": { "type": "string" } }, "required": ["invoice_number", "vendor_name", "customer_name", "items", "subtotal", "tax", "total_amount"] } }, "required": ["document_type", "data"] }
'''
generation_config = dict(max_new_tokens=4096)
response = model.chat(tokenizer, pixel_values, question, generation_config)
elif file_document == "Faktur Pajak":
question = '''
<image> You are a document processing model. This is an invoice. If multiple images are provided, treat them as a single document and combine their content for processing. Extract and label the following entities from the given image, providing the output in JSON format. The values must only include text found in the document image. Use null or [] for missing entity types.
{ "type": "object", "properties": { "document_type": { "type": "string", "enum": ["invoice"] }, "data": { "type": "object", "properties": { "invoice_number": { "type": "string" }, "vendor_name": { "type": "string" }, "customer_name": { "type": "string" }, "items": { "type": "array", "items": { "type": "object", "properties": { "description": { "type": "string" }, "quantity": { "type": "integer", "nullable": true }, "unit_price": { "type": "string" }, "total_price": { "type": "string" } }, "required": ["description", "quantity", "unit_price", "total_price"] } }, "subtotal": { "type": "string" }, "tax": { "type": "string" }, "total_amount": { "type": "string" } }, "required": ["invoice_number", "vendor_name", "customer_name", "items", "subtotal", "tax", "total_amount"] } }, "required": ["document_type", "data"] }
'''
generation_config = dict(max_new_tokens=4096)
response = model.chat(tokenizer, pixel_values, question, generation_config)
elif file_document == "E-Statement":
question = '''
<image> You are a document processing model. This is an e-statement. If multiple images are provided, treat them as a single document and combine their content for processing. Extract and label the following entities from the given image, providing the output in JSON format. The values must only include text found in the document image. Use null or [] for missing entity types.
{ "type": "object", "properties": { "document_type": { "type": "string", "enum": ["e-statement"] }, "data": { "type": "object", "properties": { "account_number": { "type": "string" }, "bank_name": { "type": "string" }, "customer_name": { "type": "string" }, "statement_period": { "type": "string" }, "currency": { "type": "string" }, "country": { "type": "string" }, "transactions": { "type": "array", "items": { "type": "object", "properties": { "transaction_type": { "type": "string" }, "amount": { "type": "number", "nullable": true }, "date": { "type": "string" }, "reference": { "type": "string" } }, "required": ["transaction_type", "amount", "date", "reference"] } } }, "required": ["account_number", "bank_name", "customer_name", "statement_period", "currency", "country", "transactions"] } }, "required": ["document_type", "data"] }
'''
generation_config = dict(num_beams=1,
max_new_tokens=4096,
do_sample=True,
repetition_penalty=1.1,
temperature=0.2,
top_p=0.7)
response = model.chat(tokenizer, pixel_values, question, generation_config)
elif file_document == "Hukum":
question = "You are a document processing model. The provided documents may include laws, regulations, legal journals, or other related legal papers. Extract and label the relevant entities from the given documents. If multiple images or files are provided, treat them as a single document and combine their content for processing. Provide the output in JSON format."
generation_config = dict(max_new_tokens=4096,
repetition_penalty=1.2,
do_sample=True,
temperature=0.1,
top_p=1.0)
response = model.chat(tokenizer, pixel_values, question, generation_config)
except Exception as e:
return None, f"Terjadi kesalahan saat memproses file PDF: {str(e)}"
elif file_type == "Image":
try:
image = Image.open(file.name)
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
temp_path = temp_file.name
image.save(temp_path, format='PNG')
pixel_values = load_image(temp_path, max_num=12).to(device)
if file_document == "Receipt":
question = '''
<image> You are a document processing model. This is a purchase receipt. Extract and label the following entities from the given image, providing the output in JSON format. The values must only include text found in the document image. Use null or [] for missing entity types. Extra The output JSON format must follow these specifications:
{ "type": "object", "properties": { "document_type": { "type": "string", "enum": ["purchase_receipt"] }, "data": { "type": "object", "properties": { "receipt_number": { "type": "string" }, "vendor_name": { "type": "string" }, "customer_name": { "type": "string" }, "items": { "type": "array", "items": { "type": "object", "properties": { "description": { "type": "string" }, "quantity": { "type": "integer", "nullable": true }, "unit_price": { "type": "string" }, "total_price": { "type": "string" } }, "required": ["description", "quantity", "unit_price", "total_price"] } }, "total_amount": { "type": "string" } }, "required": ["receipt_number", "vendor_name", "customer_name", "items", "total_amount"] } }, "required": ["document_type", "data"] }
'''
generation_config = dict(num_beams=1,
max_new_tokens=4096,
do_sample=True,
temperature=0.2,
repetition_penalty=1.1,
top_p=0.7)
response = model.chat(tokenizer, pixel_values, question, generation_config)
elif file_document == "Invoice":
question = '''
<image> You are a document processing model. This is an invoice. Extract and label the following entities from the given image, providing the output in JSON format. The values must only include text found in the document image. Use null or [] for missing entity types. The output JSON format must follow these specifications:
{ "type": "object", "properties": { "document_type": { "type": "string", "enum": ["invoice"] }, "data": { "type": "object", "properties": { "invoice_number": { "type": "string" }, "vendor_name": { "type": "string" }, "customer_name": { "type": "string" }, "items": { "type": "array", "items": { "type": "object", "properties": { "description": { "type": "string" }, "quantity": { "type": "integer", "nullable": true }, "unit_price": { "type": "string" }, "total_price": { "type": "string" } }, "required": ["description", "quantity", "unit_price", "total_price"] } }, "subtotal": { "type": "string" }, "tax": { "type": "string" }, "total_amount": { "type": "string" } }, "required": ["invoice_number", "vendor_name", "customer_name", "items", "subtotal", "tax", "total_amount"] } }, "required": ["document_type", "data"] }
'''
generation_config = dict(max_new_tokens=4096)
response = model.chat(tokenizer, pixel_values, question, generation_config)
elif file_document == "Faktur Pajak":
question = '''
<image> You are a document processing model. This is an invoice. Extract and label the following entities from the given image, providing the output in JSON format. The values must only include text found in the document image. Use null or [] for missing entity types.
{ "type": "object", "properties": { "document_type": { "type": "string", "enum": ["invoice"] }, "data": { "type": "object", "properties": { "invoice_number": { "type": "string" }, "vendor_name": { "type": "string" }, "customer_name": { "type": "string" }, "items": { "type": "array", "items": { "type": "object", "properties": { "description": { "type": "string" }, "quantity": { "type": "integer", "nullable": true }, "unit_price": { "type": "string" }, "total_price": { "type": "string" } }, "required": ["description", "quantity", "unit_price", "total_price"] } }, "subtotal": { "type": "string" }, "tax": { "type": "string" }, "total_amount": { "type": "string" } }, "required": ["invoice_number", "vendor_name", "customer_name", "items", "subtotal", "tax", "total_amount"] } }, "required": ["document_type", "data"] }
'''
generation_config = dict(max_new_tokens=4096)
response = model.chat(tokenizer, pixel_values, question, generation_config)
elif file_document == "E-Statement":
question = '''
<image> You are a document processing model. This is an e-statement. Extract and label the following entities from the given image, providing the output in JSON format. The values must only include text found in the document image. Use null or [] for missing entity types.
{ "type": "object", "properties": { "document_type": { "type": "string", "enum": ["e-statement"] }, "data": { "type": "object", "properties": { "account_number": { "type": "string" }, "bank_name": { "type": "string" }, "customer_name": { "type": "string" }, "statement_period": { "type": "string" }, "currency": { "type": "string" }, "country": { "type": "string" }, "transactions": { "type": "array", "items": { "type": "object", "properties": { "transaction_type": { "type": "string" }, "amount": { "type": "number", "nullable": true }, "date": { "type": "string" }, "reference": { "type": "string" } }, "required": ["transaction_type", "amount", "date", "reference"] } } }, "required": ["account_number", "bank_name", "customer_name", "statement_period", "currency", "country", "transactions"] } }, "required": ["document_type", "data"] }
'''
generation_config = dict(num_beams=1,
max_new_tokens=4096,
do_sample=True,
repetition_penalty=1.1,
temperature=0.2,
top_p=0.7)
response = model.chat(tokenizer, pixel_values, question, generation_config)
elif file_document == "Hukum":
question = "You are a document processing model. The provided documents may include laws, regulations, legal journals, or other related legal papers. Extract and label the relevant entities from the given documents. If multiple images or files are provided, treat them as a single document and combine their content for processing. Provide the output in JSON format."
generation_config = dict(max_new_tokens=4096,
repetition_penalty=1.2,
do_sample=True,
temperature=0.1,
top_p=1.0)
response = model.chat(tokenizer, pixel_values, question, generation_config)
except Exception as e:
return None, f"Terjadi kesalahan saat memproses file gambar: {str(e)}"
def preprocess_json_string_for_numbers(json_string: str) -> str:
def replace_misplaced_separators(match):
num_str = match.group(0)
num_str = re.sub(r'[^\d,.-]', '', num_str)
if ',' in num_str and '.' not in num_str:
corrected_num_str = num_str.replace(',', '')
elif ',' in num_str and '.' in num_str:
if num_str.index(',') > num_str.index('.'):
corrected_num_str = num_str.replace('.', '').replace(',', '.')
else:
corrected_num_str = num_str.replace(',', '')
else:
corrected_num_str = num_str.replace('.', '')
corrected_num_str = str(int(corrected_num_str))
return corrected_num_str
corrected_string = re.sub(r'\b\d{1,3}([.,]\d{3})*(,\d{2})?\b', replace_misplaced_separators, json_string)
return corrected_string
def extract_and_parse_json(string_with_json: str):
json_pattern = re.search(r'{.*}', string_with_json, re.DOTALL)
if json_pattern:
json_string = json_pattern.group()
try:
corrected_json_string = preprocess_json_string_for_numbers(json_string)
json_data = json.loads(corrected_json_string)
print("Parsed JSON data:", json_data)
return json_data
except json.JSONDecodeError as e:
print("Error decoding JSON:", e)
return corrected_json_string
else:
print("No JSON found in the string")
return None
string_with_json = response
string_with_json = string_with_json.replace("'", '"')
parsed_data = extract_and_parse_json(string_with_json)
if file_document == "Receipt":
class Item(BaseModel):
description: Optional[str] = None
quantity: Optional[int] = 1
unit_price: Optional[float] = None
total_price: Optional[float] = None
@validator('unit_price', 'total_price', pre=True, always=True)
def parse_price(cls, v):
if isinstance(v, str):
v = re.sub(r'[^\d,.-]', '', v).replace(',', '')
return float(v)
return v
class PurchaseReceiptData(BaseModel):
receipt_number: Optional[str] = None
vendor_name: Optional[str] = None
customer_name: Optional[str] = None
items: List[Item]
total_amount: Optional[float] = None
@validator('total_amount', pre=True, always=True)
def remove_currency_format(cls, v):
if isinstance(v, str):
v = re.sub(r'[^\d,.-]', '', v).replace(',', '')
return float(v)
return v
class PurchaseReceipt(BaseModel):
document_type: Literal["purchase_receipt"]
data: PurchaseReceiptData
@root_validator(pre=True)
def ensure_format(cls, values):
if 'document_type' not in values:
values['document_type'] = 'purchase_receipt'
return values
predicted_json = parsed_data
try:
receipt = PurchaseReceipt(document_type="purchase_receipt", data=predicted_json['data'])
corrected_json = receipt.dict()
print(corrected_json)
except ValidationError as e:
print(f"Validation error: {e}")
elif file_document == "Invoice":
class Item(BaseModel):
description: Optional[str] = None
quantity: Optional[int] = 1
unit_price: Optional[float] = None
total_price: Optional[float] = None
@validator('unit_price', 'total_price', pre=True, always=True)
def parse_price(cls, v):
if isinstance(v, str):
v = re.sub(r'[^\d,.-]', '', v).replace(',', '')
return float(v)
return v
class InvoiceData(BaseModel):
invoice_number: Optional[str] = None
vendor_name: Optional[str] = None
customer_name: Optional[str] = None
items: List[Item]
subtotal: float
tax: Optional[float] = None
total_amount: float
@validator('total_amount', 'subtotal', 'tax', pre=True, always=True)
def remove_currency_format(cls, v):
if isinstance(v, str):
v = re.sub(r'[^\d,.-]', '', v).replace(',', '')
return float(v)
return v
class Invoice(BaseModel):
document_type: Literal["invoice"]
data: InvoiceData
@root_validator(pre=True)
def ensure_format(cls, values):
if 'document_type' not in values:
values['document_type'] = 'invoice'
return values
predicted_json = parsed_data
try:
invoice = Invoice(document_type="invoice", data=predicted_json['data'])
corrected_json = invoice.dict()
print(corrected_json)
except ValidationError as e:
print(f"Validation error: {e}")
elif file_document == "Faktur Pajak":
predicted_json = parsed_data
corrected_json = predicted_json
elif file_document == "E-Statement":
predicted_json = parsed_data
corrected_json = predicted_json
elif file_document == "Hukum":
predicted_json = parsed_data
corrected_json = predicted_json
return corrected_json
file_type_radio = gr.Radio(choices=["Image", "PDF"], label="Pilih tipe file")
file_document_radio = gr.Radio(choices=["Receipt", "Invoice", "Faktur Pajak", "E-Statement", "Hukum"], label="Pilih jenis dokumen file")
file_input = gr.File(label="Unggah file", file_types=["image", "pdf"])
interface = gr.Interface(
fn=process_file,
inputs=[file_input, file_type_radio, file_document_radio],
outputs="json",
title="POC Finance Document Processing Using AI",
description="Pilih tipe file dan unggah file gambar atau PDF untuk diproses."
)
interface.launch()