Refactor
Browse files
app.py
CHANGED
@@ -3,33 +3,11 @@
|
|
3 |
from __future__ import annotations
|
4 |
|
5 |
import argparse
|
6 |
-
import os
|
7 |
import pathlib
|
8 |
-
import subprocess
|
9 |
-
import sys
|
10 |
-
|
11 |
-
if os.getenv('SYSTEM') == 'spaces':
|
12 |
-
import mim
|
13 |
-
|
14 |
-
mim.uninstall('mmcv-full', confirm_yes=True)
|
15 |
-
mim.install('mmcv-full==1.5.0', is_yes=True)
|
16 |
-
|
17 |
-
subprocess.run('pip uninstall -y opencv-python'.split())
|
18 |
-
subprocess.run('pip uninstall -y opencv-python-headless'.split())
|
19 |
-
subprocess.run('pip install opencv-python-headless==4.5.5.64'.split())
|
20 |
-
|
21 |
-
with open('patch') as f:
|
22 |
-
subprocess.run('patch -p1'.split(), cwd='CBNetV2', stdin=f)
|
23 |
-
subprocess.run('mv palette.py CBNetV2/mmdet/core/visualization/'.split())
|
24 |
|
25 |
import gradio as gr
|
26 |
-
import numpy as np
|
27 |
-
import torch
|
28 |
-
import torch.nn as nn
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
from mmdet.apis import inference_detector, init_detector
|
33 |
|
34 |
DESCRIPTION = '''# CBNetV2
|
35 |
|
@@ -49,117 +27,6 @@ def parse_args() -> argparse.Namespace:
|
|
49 |
return parser.parse_args()
|
50 |
|
51 |
|
52 |
-
class Model:
|
53 |
-
def __init__(self, device: str | torch.device):
|
54 |
-
self.device = torch.device(device)
|
55 |
-
self.models = self._load_models()
|
56 |
-
self.model_name = 'Improved HTC (DB-Swin-B)'
|
57 |
-
|
58 |
-
def _load_models(self) -> dict[str, nn.Module]:
|
59 |
-
model_dict = {
|
60 |
-
'Faster R-CNN (DB-ResNet50)': {
|
61 |
-
'config':
|
62 |
-
'CBNetV2/configs/cbnet/faster_rcnn_cbv2d1_r50_fpn_1x_coco.py',
|
63 |
-
'model':
|
64 |
-
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/faster_rcnn_cbv2d1_r50_fpn_1x_coco.pth.zip',
|
65 |
-
},
|
66 |
-
'Mask R-CNN (DB-Swin-T)': {
|
67 |
-
'config':
|
68 |
-
'CBNetV2/configs/cbnet/mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.py',
|
69 |
-
'model':
|
70 |
-
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.pth.zip',
|
71 |
-
},
|
72 |
-
# 'Cascade Mask R-CNN (DB-Swin-S)': {
|
73 |
-
# 'config':
|
74 |
-
# 'CBNetV2/configs/cbnet/cascade_mask_rcnn_cbv2_swin_small_patch4_window7_mstrain_400-1400_adamw_3x_coco.py',
|
75 |
-
# 'model':
|
76 |
-
# 'https://github.com/CBNetwork/storage/releases/download/v1.0.0/cascade_mask_rcnn_cbv2_swin_small_patch4_window7_mstrain_400-1400_adamw_3x_coco.pth.zip',
|
77 |
-
# },
|
78 |
-
'Improved HTC (DB-Swin-B)': {
|
79 |
-
'config':
|
80 |
-
'CBNetV2/configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.py',
|
81 |
-
'model':
|
82 |
-
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_base22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.pth.zip',
|
83 |
-
},
|
84 |
-
'Improved HTC (DB-Swin-L)': {
|
85 |
-
'config':
|
86 |
-
'CBNetV2/configs/cbnet/htc_cbv2_swin_large_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.py',
|
87 |
-
'model':
|
88 |
-
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_large22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.pth.zip',
|
89 |
-
},
|
90 |
-
'Improved HTC (DB-Swin-L (TTA))': {
|
91 |
-
'config':
|
92 |
-
'CBNetV2/configs/cbnet/htc_cbv2_swin_large_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.py',
|
93 |
-
'model':
|
94 |
-
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_large22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.pth.zip',
|
95 |
-
},
|
96 |
-
}
|
97 |
-
|
98 |
-
weight_dir = pathlib.Path('weights')
|
99 |
-
weight_dir.mkdir(exist_ok=True)
|
100 |
-
|
101 |
-
def _download(model_name: str, out_dir: pathlib.Path) -> None:
|
102 |
-
import zipfile
|
103 |
-
|
104 |
-
model_url = model_dict[model_name]['model']
|
105 |
-
zip_name = model_url.split('/')[-1]
|
106 |
-
|
107 |
-
out_path = out_dir / zip_name
|
108 |
-
if out_path.exists():
|
109 |
-
return
|
110 |
-
torch.hub.download_url_to_file(model_url, out_path)
|
111 |
-
|
112 |
-
with zipfile.ZipFile(out_path) as f:
|
113 |
-
f.extractall(out_dir)
|
114 |
-
|
115 |
-
def _get_model_path(model_name: str) -> str:
|
116 |
-
model_url = model_dict[model_name]['model']
|
117 |
-
model_name = model_url.split('/')[-1][:-4]
|
118 |
-
return (weight_dir / model_name).as_posix()
|
119 |
-
|
120 |
-
for model_name in model_dict:
|
121 |
-
_download(model_name, weight_dir)
|
122 |
-
|
123 |
-
models = {
|
124 |
-
key: init_detector(dic['config'],
|
125 |
-
_get_model_path(key),
|
126 |
-
device=self.device)
|
127 |
-
for key, dic in model_dict.items()
|
128 |
-
}
|
129 |
-
return models
|
130 |
-
|
131 |
-
def set_model_name(self, name: str) -> None:
|
132 |
-
self.model_name = name
|
133 |
-
|
134 |
-
def detect_and_visualize(
|
135 |
-
self, image: np.ndarray,
|
136 |
-
score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
|
137 |
-
out = self.detect(image)
|
138 |
-
vis = self.visualize_detection_results(image, out, score_threshold)
|
139 |
-
return out, vis
|
140 |
-
|
141 |
-
def detect(self, image: np.ndarray) -> list[np.ndarray]:
|
142 |
-
image = image[:, :, ::-1] # RGB -> BGR
|
143 |
-
model = self.models[self.model_name]
|
144 |
-
out = inference_detector(model, image)
|
145 |
-
return out
|
146 |
-
|
147 |
-
def visualize_detection_results(
|
148 |
-
self,
|
149 |
-
image: np.ndarray,
|
150 |
-
detection_results: list[np.ndarray],
|
151 |
-
score_threshold: float = 0.3) -> np.ndarray:
|
152 |
-
image = image[:, :, ::-1] # RGB -> BGR
|
153 |
-
model = self.models[self.model_name]
|
154 |
-
vis = model.show_result(image,
|
155 |
-
detection_results,
|
156 |
-
score_thr=score_threshold,
|
157 |
-
bbox_color=None,
|
158 |
-
text_color=(200, 200, 200),
|
159 |
-
mask_color=None)
|
160 |
-
return vis[:, :, ::-1] # BGR -> RGB
|
161 |
-
|
162 |
-
|
163 |
def set_example_image(example: list) -> dict:
|
164 |
return gr.Image.update(value=example[0])
|
165 |
|
|
|
3 |
from __future__ import annotations
|
4 |
|
5 |
import argparse
|
|
|
6 |
import pathlib
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
import gradio as gr
|
|
|
|
|
|
|
9 |
|
10 |
+
from model import Model
|
|
|
|
|
11 |
|
12 |
DESCRIPTION = '''# CBNetV2
|
13 |
|
|
|
27 |
return parser.parse_args()
|
28 |
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def set_example_image(example: list) -> dict:
|
31 |
return gr.Image.update(value=example[0])
|
32 |
|
model.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import pathlib
|
5 |
+
import subprocess
|
6 |
+
import sys
|
7 |
+
|
8 |
+
if os.getenv('SYSTEM') == 'spaces':
|
9 |
+
import mim
|
10 |
+
|
11 |
+
mim.uninstall('mmcv-full', confirm_yes=True)
|
12 |
+
mim.install('mmcv-full==1.5.0', is_yes=True)
|
13 |
+
|
14 |
+
subprocess.run('pip uninstall -y opencv-python'.split())
|
15 |
+
subprocess.run('pip uninstall -y opencv-python-headless'.split())
|
16 |
+
subprocess.run('pip install opencv-python-headless==4.5.5.64'.split())
|
17 |
+
|
18 |
+
with open('patch') as f:
|
19 |
+
subprocess.run('patch -p1'.split(), cwd='CBNetV2', stdin=f)
|
20 |
+
subprocess.run('mv palette.py CBNetV2/mmdet/core/visualization/'.split())
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
|
26 |
+
sys.path.insert(0, 'CBNetV2/')
|
27 |
+
|
28 |
+
from mmdet.apis import inference_detector, init_detector
|
29 |
+
|
30 |
+
|
31 |
+
class Model:
|
32 |
+
def __init__(self, device: str | torch.device):
|
33 |
+
self.device = torch.device(device)
|
34 |
+
self.models = self._load_models()
|
35 |
+
self.model_name = 'Improved HTC (DB-Swin-B)'
|
36 |
+
|
37 |
+
def _load_models(self) -> dict[str, nn.Module]:
|
38 |
+
model_dict = {
|
39 |
+
'Faster R-CNN (DB-ResNet50)': {
|
40 |
+
'config':
|
41 |
+
'CBNetV2/configs/cbnet/faster_rcnn_cbv2d1_r50_fpn_1x_coco.py',
|
42 |
+
'model':
|
43 |
+
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/faster_rcnn_cbv2d1_r50_fpn_1x_coco.pth.zip',
|
44 |
+
},
|
45 |
+
'Mask R-CNN (DB-Swin-T)': {
|
46 |
+
'config':
|
47 |
+
'CBNetV2/configs/cbnet/mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.py',
|
48 |
+
'model':
|
49 |
+
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.pth.zip',
|
50 |
+
},
|
51 |
+
# 'Cascade Mask R-CNN (DB-Swin-S)': {
|
52 |
+
# 'config':
|
53 |
+
# 'CBNetV2/configs/cbnet/cascade_mask_rcnn_cbv2_swin_small_patch4_window7_mstrain_400-1400_adamw_3x_coco.py',
|
54 |
+
# 'model':
|
55 |
+
# 'https://github.com/CBNetwork/storage/releases/download/v1.0.0/cascade_mask_rcnn_cbv2_swin_small_patch4_window7_mstrain_400-1400_adamw_3x_coco.pth.zip',
|
56 |
+
# },
|
57 |
+
'Improved HTC (DB-Swin-B)': {
|
58 |
+
'config':
|
59 |
+
'CBNetV2/configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.py',
|
60 |
+
'model':
|
61 |
+
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_base22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.pth.zip',
|
62 |
+
},
|
63 |
+
'Improved HTC (DB-Swin-L)': {
|
64 |
+
'config':
|
65 |
+
'CBNetV2/configs/cbnet/htc_cbv2_swin_large_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.py',
|
66 |
+
'model':
|
67 |
+
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_large22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.pth.zip',
|
68 |
+
},
|
69 |
+
'Improved HTC (DB-Swin-L (TTA))': {
|
70 |
+
'config':
|
71 |
+
'CBNetV2/configs/cbnet/htc_cbv2_swin_large_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.py',
|
72 |
+
'model':
|
73 |
+
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_large22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.pth.zip',
|
74 |
+
},
|
75 |
+
}
|
76 |
+
|
77 |
+
weight_dir = pathlib.Path('weights')
|
78 |
+
weight_dir.mkdir(exist_ok=True)
|
79 |
+
|
80 |
+
def _download(model_name: str, out_dir: pathlib.Path) -> None:
|
81 |
+
import zipfile
|
82 |
+
|
83 |
+
model_url = model_dict[model_name]['model']
|
84 |
+
zip_name = model_url.split('/')[-1]
|
85 |
+
|
86 |
+
out_path = out_dir / zip_name
|
87 |
+
if out_path.exists():
|
88 |
+
return
|
89 |
+
torch.hub.download_url_to_file(model_url, out_path)
|
90 |
+
|
91 |
+
with zipfile.ZipFile(out_path) as f:
|
92 |
+
f.extractall(out_dir)
|
93 |
+
|
94 |
+
def _get_model_path(model_name: str) -> str:
|
95 |
+
model_url = model_dict[model_name]['model']
|
96 |
+
model_name = model_url.split('/')[-1][:-4]
|
97 |
+
return (weight_dir / model_name).as_posix()
|
98 |
+
|
99 |
+
for model_name in model_dict:
|
100 |
+
_download(model_name, weight_dir)
|
101 |
+
|
102 |
+
models = {
|
103 |
+
key: init_detector(dic['config'],
|
104 |
+
_get_model_path(key),
|
105 |
+
device=self.device)
|
106 |
+
for key, dic in model_dict.items()
|
107 |
+
}
|
108 |
+
return models
|
109 |
+
|
110 |
+
def set_model_name(self, name: str) -> None:
|
111 |
+
self.model_name = name
|
112 |
+
|
113 |
+
def detect_and_visualize(
|
114 |
+
self, image: np.ndarray,
|
115 |
+
score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
|
116 |
+
out = self.detect(image)
|
117 |
+
vis = self.visualize_detection_results(image, out, score_threshold)
|
118 |
+
return out, vis
|
119 |
+
|
120 |
+
def detect(self, image: np.ndarray) -> list[np.ndarray]:
|
121 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
122 |
+
model = self.models[self.model_name]
|
123 |
+
out = inference_detector(model, image)
|
124 |
+
return out
|
125 |
+
|
126 |
+
def visualize_detection_results(
|
127 |
+
self,
|
128 |
+
image: np.ndarray,
|
129 |
+
detection_results: list[np.ndarray],
|
130 |
+
score_threshold: float = 0.3) -> np.ndarray:
|
131 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
132 |
+
model = self.models[self.model_name]
|
133 |
+
vis = model.show_result(image,
|
134 |
+
detection_results,
|
135 |
+
score_thr=score_threshold,
|
136 |
+
bbox_color=None,
|
137 |
+
text_color=(200, 200, 200),
|
138 |
+
mask_color=None)
|
139 |
+
return vis[:, :, ::-1] # BGR -> RGB
|