Add files
Browse files- .gitattributes +2 -0
- .gitignore +1 -0
- .gitmodules +3 -0
- .pre-commit-config.yaml +46 -0
- .style.yapf +5 -0
- CBNetV2 +1 -0
- README.md +1 -1
- app.py +240 -0
- images/README.md +9 -0
- images/pexels-element-digital-1370295.jpg +3 -0
- images/pexels-elle-hughes-1549196.jpg +3 -0
- images/pexels-jean-van-der-meulen-1599791.jpg +3 -0
- images/pexels-mark-stebnicki-2255935.jpg +3 -0
- images/pexels-oleksandr-pidvalnyi-1031698.jpg +3 -0
- images/pexels-pixabay-45170.jpg +3 -0
- images/pexels-trang-doan-1132047.jpg +3 -0
- palette.py +273 -0
- patch +834 -0
- requirements.txt +8 -0
.gitattributes
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
3 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
4 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
5 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
weights/
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "CBNetV2"]
|
2 |
+
path = CBNetV2
|
3 |
+
url = https://github.com/VDIGPKU/CBNetV2
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
exclude: ^(CBNetV2/|patch)
|
2 |
+
repos:
|
3 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
+
rev: v4.2.0
|
5 |
+
hooks:
|
6 |
+
- id: check-executables-have-shebangs
|
7 |
+
- id: check-json
|
8 |
+
- id: check-merge-conflict
|
9 |
+
- id: check-shebang-scripts-are-executable
|
10 |
+
- id: check-toml
|
11 |
+
- id: check-yaml
|
12 |
+
- id: double-quote-string-fixer
|
13 |
+
- id: end-of-file-fixer
|
14 |
+
- id: mixed-line-ending
|
15 |
+
args: ['--fix=lf']
|
16 |
+
- id: requirements-txt-fixer
|
17 |
+
- id: trailing-whitespace
|
18 |
+
- repo: https://github.com/myint/docformatter
|
19 |
+
rev: v1.4
|
20 |
+
hooks:
|
21 |
+
- id: docformatter
|
22 |
+
args: ['--in-place']
|
23 |
+
- repo: https://github.com/pycqa/isort
|
24 |
+
rev: 5.10.1
|
25 |
+
hooks:
|
26 |
+
- id: isort
|
27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
+
rev: v0.812
|
29 |
+
hooks:
|
30 |
+
- id: mypy
|
31 |
+
args: ['--ignore-missing-imports']
|
32 |
+
- repo: https://github.com/google/yapf
|
33 |
+
rev: v0.32.0
|
34 |
+
hooks:
|
35 |
+
- id: yapf
|
36 |
+
args: ['--parallel', '--in-place']
|
37 |
+
- repo: https://github.com/kynan/nbstripout
|
38 |
+
rev: 0.5.0
|
39 |
+
hooks:
|
40 |
+
- id: nbstripout
|
41 |
+
args: ['--extra-keys', 'metadata.interpreter metadata.kernelspec cell.metadata.pycharm']
|
42 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
43 |
+
rev: 1.3.1
|
44 |
+
hooks:
|
45 |
+
- id: nbqa-isort
|
46 |
+
- id: nbqa-yapf
|
.style.yapf
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[style]
|
2 |
+
based_on_style = pep8
|
3 |
+
blank_line_before_nested_class_or_def = false
|
4 |
+
spaces_before_comment = 2
|
5 |
+
split_before_logical_operator = true
|
CBNetV2
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit a546be507af55a17c96dc18a85f86b17656ff814
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 📉
|
|
4 |
colorFrom: gray
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.0.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.0.5
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import os
|
7 |
+
import pathlib
|
8 |
+
import subprocess
|
9 |
+
import sys
|
10 |
+
|
11 |
+
if os.getenv('SYSTEM') == 'spaces':
|
12 |
+
import mim
|
13 |
+
|
14 |
+
mim.uninstall('mmcv-full', confirm_yes=True)
|
15 |
+
mim.install('mmcv-full==1.5.0', is_yes=True)
|
16 |
+
|
17 |
+
subprocess.call('pip uninstall -y opencv-python'.split())
|
18 |
+
subprocess.call('pip uninstall -y opencv-python-headless'.split())
|
19 |
+
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
|
20 |
+
|
21 |
+
subprocess.call('git apply ../patch'.split(), cwd='CBNetV2')
|
22 |
+
subprocess.call('mv palette.py CBNetV2/mmdet/core/visualization/'.split())
|
23 |
+
|
24 |
+
import gradio as gr
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
import torch.nn as nn
|
28 |
+
|
29 |
+
sys.path.insert(0, 'CBNetV2/')
|
30 |
+
|
31 |
+
from mmdet.apis import inference_detector, init_detector
|
32 |
+
|
33 |
+
|
34 |
+
def parse_args() -> argparse.Namespace:
|
35 |
+
parser = argparse.ArgumentParser()
|
36 |
+
parser.add_argument('--device', type=str, default='cpu')
|
37 |
+
parser.add_argument('--theme', type=str)
|
38 |
+
parser.add_argument('--share', action='store_true')
|
39 |
+
parser.add_argument('--port', type=int)
|
40 |
+
parser.add_argument('--disable-queue',
|
41 |
+
dest='enable_queue',
|
42 |
+
action='store_false')
|
43 |
+
return parser.parse_args()
|
44 |
+
|
45 |
+
|
46 |
+
class Model:
|
47 |
+
def __init__(self, device: str | torch.device):
|
48 |
+
self.device = torch.device(device)
|
49 |
+
self.models = self._load_models()
|
50 |
+
self.model_name = 'Improved HTC (DB-Swin-B)'
|
51 |
+
|
52 |
+
def _load_models(self) -> dict[str, nn.Module]:
|
53 |
+
model_dict = {
|
54 |
+
'Faster R-CNN (DB-ResNet50)': {
|
55 |
+
'config':
|
56 |
+
'CBNetV2/configs/cbnet/faster_rcnn_cbv2d1_r50_fpn_1x_coco.py',
|
57 |
+
'model':
|
58 |
+
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/faster_rcnn_cbv2d1_r50_fpn_1x_coco.pth.zip',
|
59 |
+
},
|
60 |
+
'Mask R-CNN (DB-Swin-T)': {
|
61 |
+
'config':
|
62 |
+
'CBNetV2/configs/cbnet/mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.py',
|
63 |
+
'model':
|
64 |
+
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.pth.zip',
|
65 |
+
},
|
66 |
+
# 'Cascade Mask R-CNN (DB-Swin-S)': {
|
67 |
+
# 'config':
|
68 |
+
# 'CBNetV2/configs/cbnet/cascade_mask_rcnn_cbv2_swin_small_patch4_window7_mstrain_400-1400_adamw_3x_coco.py',
|
69 |
+
# 'model':
|
70 |
+
# 'https://github.com/CBNetwork/storage/releases/download/v1.0.0/cascade_mask_rcnn_cbv2_swin_small_patch4_window7_mstrain_400-1400_adamw_3x_coco.pth.zip',
|
71 |
+
# },
|
72 |
+
'Improved HTC (DB-Swin-B)': {
|
73 |
+
'config':
|
74 |
+
'CBNetV2/configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.py',
|
75 |
+
'model':
|
76 |
+
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_base22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.pth.zip',
|
77 |
+
},
|
78 |
+
'Improved HTC (DB-Swin-L)': {
|
79 |
+
'config':
|
80 |
+
'CBNetV2/configs/cbnet/htc_cbv2_swin_large_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.py',
|
81 |
+
'model':
|
82 |
+
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_large22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.pth.zip',
|
83 |
+
},
|
84 |
+
'Improved HTC (DB-Swin-L (TTA))': {
|
85 |
+
'config':
|
86 |
+
'CBNetV2/configs/cbnet/htc_cbv2_swin_large_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.py',
|
87 |
+
'model':
|
88 |
+
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_large22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.pth.zip',
|
89 |
+
},
|
90 |
+
}
|
91 |
+
|
92 |
+
weight_dir = pathlib.Path('weights')
|
93 |
+
weight_dir.mkdir(exist_ok=True)
|
94 |
+
|
95 |
+
def _download(model_name: str, out_dir: pathlib.Path) -> None:
|
96 |
+
import zipfile
|
97 |
+
|
98 |
+
model_url = model_dict[model_name]['model']
|
99 |
+
zip_name = model_url.split('/')[-1]
|
100 |
+
|
101 |
+
out_path = out_dir / zip_name
|
102 |
+
if out_path.exists():
|
103 |
+
return
|
104 |
+
torch.hub.download_url_to_file(model_url, out_path)
|
105 |
+
|
106 |
+
with zipfile.ZipFile(out_path) as f:
|
107 |
+
f.extractall(out_dir)
|
108 |
+
|
109 |
+
def _get_model_path(model_name: str) -> str:
|
110 |
+
model_url = model_dict[model_name]['model']
|
111 |
+
model_name = model_url.split('/')[-1][:-4]
|
112 |
+
return (weight_dir / model_name).as_posix()
|
113 |
+
|
114 |
+
for model_name in model_dict:
|
115 |
+
_download(model_name, weight_dir)
|
116 |
+
|
117 |
+
models = {
|
118 |
+
key: init_detector(dic['config'],
|
119 |
+
_get_model_path(key),
|
120 |
+
device=self.device)
|
121 |
+
for key, dic in model_dict.items()
|
122 |
+
}
|
123 |
+
return models
|
124 |
+
|
125 |
+
def set_model_name(self, name: str) -> None:
|
126 |
+
self.model_name = name
|
127 |
+
|
128 |
+
def detect_and_visualize(
|
129 |
+
self, image: np.ndarray,
|
130 |
+
score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
|
131 |
+
out = self.detect(image)
|
132 |
+
vis = self.visualize_detection_results(image, out, score_threshold)
|
133 |
+
return out, vis
|
134 |
+
|
135 |
+
def detect(self, image: np.ndarray) -> list[np.ndarray]:
|
136 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
137 |
+
model = self.models[self.model_name]
|
138 |
+
out = inference_detector(model, image)
|
139 |
+
return out
|
140 |
+
|
141 |
+
def visualize_detection_results(
|
142 |
+
self,
|
143 |
+
image: np.ndarray,
|
144 |
+
detection_results: list[np.ndarray],
|
145 |
+
score_threshold: float = 0.3) -> np.ndarray:
|
146 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
147 |
+
model = self.models[self.model_name]
|
148 |
+
vis = model.show_result(image,
|
149 |
+
detection_results,
|
150 |
+
score_thr=score_threshold,
|
151 |
+
bbox_color=None,
|
152 |
+
text_color=(200, 200, 200),
|
153 |
+
mask_color=None)
|
154 |
+
return vis[:, :, ::-1] # BGR -> RGB
|
155 |
+
|
156 |
+
|
157 |
+
def set_example_image(example: list) -> dict:
|
158 |
+
return gr.Image.update(value=example[0])
|
159 |
+
|
160 |
+
|
161 |
+
def main():
|
162 |
+
args = parse_args()
|
163 |
+
model = Model(args.device)
|
164 |
+
|
165 |
+
css = '''
|
166 |
+
h1#title {
|
167 |
+
text-align: center;
|
168 |
+
}
|
169 |
+
'''
|
170 |
+
|
171 |
+
with gr.Blocks(theme=args.theme, css=css) as demo:
|
172 |
+
gr.Markdown('''<h1 id="title">VDIGPKU/CBNetV2</h1>
|
173 |
+
|
174 |
+
This is an unofficial demo for [https://github.com/VDIGPKU/CBNetV2](https://github.com/VDIGPKU/CBNetV2).'''
|
175 |
+
)
|
176 |
+
|
177 |
+
with gr.Row():
|
178 |
+
with gr.Column():
|
179 |
+
with gr.Row():
|
180 |
+
input_image = gr.Image(label='Input Image', type='numpy')
|
181 |
+
with gr.Row():
|
182 |
+
detector_name = gr.Dropdown(list(model.models.keys()),
|
183 |
+
value=model.model_name,
|
184 |
+
label='Detector')
|
185 |
+
with gr.Row():
|
186 |
+
detect_button = gr.Button(value='Detect')
|
187 |
+
detection_results = gr.Variable()
|
188 |
+
with gr.Column():
|
189 |
+
detection_visualization = gr.Image(label='Detection Result',
|
190 |
+
type='numpy')
|
191 |
+
visualization_score_threshold = gr.Slider(
|
192 |
+
0,
|
193 |
+
1,
|
194 |
+
step=0.05,
|
195 |
+
value=0.3,
|
196 |
+
label='Visualization Score Threshold')
|
197 |
+
redraw_button = gr.Button(value='Redraw')
|
198 |
+
|
199 |
+
with gr.Row():
|
200 |
+
paths = sorted(pathlib.Path('images').rglob('*.jpg'))
|
201 |
+
example_images = gr.Dataset(components=[input_image],
|
202 |
+
samples=[[path.as_posix()]
|
203 |
+
for path in paths])
|
204 |
+
|
205 |
+
gr.Markdown(
|
206 |
+
'<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.cbnetv2" alt="visitor badge"/></center>'
|
207 |
+
)
|
208 |
+
|
209 |
+
detector_name.change(fn=model.set_model_name,
|
210 |
+
inputs=[detector_name],
|
211 |
+
outputs=None)
|
212 |
+
detect_button.click(fn=model.detect_and_visualize,
|
213 |
+
inputs=[
|
214 |
+
input_image,
|
215 |
+
visualization_score_threshold,
|
216 |
+
],
|
217 |
+
outputs=[
|
218 |
+
detection_results,
|
219 |
+
detection_visualization,
|
220 |
+
])
|
221 |
+
redraw_button.click(fn=model.visualize_detection_results,
|
222 |
+
inputs=[
|
223 |
+
input_image,
|
224 |
+
detection_results,
|
225 |
+
visualization_score_threshold,
|
226 |
+
],
|
227 |
+
outputs=[detection_visualization])
|
228 |
+
example_images.click(fn=set_example_image,
|
229 |
+
inputs=[example_images],
|
230 |
+
outputs=[input_image])
|
231 |
+
|
232 |
+
demo.launch(
|
233 |
+
enable_queue=args.enable_queue,
|
234 |
+
server_port=args.port,
|
235 |
+
share=args.share,
|
236 |
+
)
|
237 |
+
|
238 |
+
|
239 |
+
if __name__ == '__main__':
|
240 |
+
main()
|
images/README.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
These images are freely-usable ones from https://www.pexels.com/.
|
2 |
+
|
3 |
+
- https://www.pexels.com/photo/assorted-color-kittens-45170/
|
4 |
+
- https://www.pexels.com/photo/white-wooden-kitchen-cabinet-1599791/
|
5 |
+
- https://www.pexels.com/photo/assorted-books-on-book-shelves-1370295/
|
6 |
+
- https://www.pexels.com/photo/pile-of-assorted-varieties-of-vegetables-2255935/
|
7 |
+
- https://www.pexels.com/photo/sliced-fruits-on-tray-1132047/
|
8 |
+
- https://www.pexels.com/photo/group-of-people-carrying-surfboards-1549196/
|
9 |
+
- https://www.pexels.com/photo/aerial-photo-of-vehicles-in-the-city-1031698/
|
images/pexels-element-digital-1370295.jpg
ADDED
![]() |
Git LFS Details
|
images/pexels-elle-hughes-1549196.jpg
ADDED
![]() |
Git LFS Details
|
images/pexels-jean-van-der-meulen-1599791.jpg
ADDED
![]() |
Git LFS Details
|
images/pexels-mark-stebnicki-2255935.jpg
ADDED
![]() |
Git LFS Details
|
images/pexels-oleksandr-pidvalnyi-1031698.jpg
ADDED
![]() |
Git LFS Details
|
images/pexels-pixabay-45170.jpg
ADDED
![]() |
Git LFS Details
|
images/pexels-trang-doan-1132047.jpg
ADDED
![]() |
Git LFS Details
|
palette.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is copied from https://github.com/open-mmlab/mmdetection/blob/v2.24.1/mmdet/core/visualization/palette.py
|
3 |
+
The LICENSE of mmdetection is the following:
|
4 |
+
|
5 |
+
```
|
6 |
+
Copyright 2018-2023 OpenMMLab. All rights reserved.
|
7 |
+
|
8 |
+
Apache License
|
9 |
+
Version 2.0, January 2004
|
10 |
+
http://www.apache.org/licenses/
|
11 |
+
|
12 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
13 |
+
|
14 |
+
1. Definitions.
|
15 |
+
|
16 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
17 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
18 |
+
|
19 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
20 |
+
the copyright owner that is granting the License.
|
21 |
+
|
22 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
23 |
+
other entities that control, are controlled by, or are under common
|
24 |
+
control with that entity. For the purposes of this definition,
|
25 |
+
"control" means (i) the power, direct or indirect, to cause the
|
26 |
+
direction or management of such entity, whether by contract or
|
27 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
28 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
29 |
+
|
30 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
31 |
+
exercising permissions granted by this License.
|
32 |
+
|
33 |
+
"Source" form shall mean the preferred form for making modifications,
|
34 |
+
including but not limited to software source code, documentation
|
35 |
+
source, and configuration files.
|
36 |
+
|
37 |
+
"Object" form shall mean any form resulting from mechanical
|
38 |
+
transformation or translation of a Source form, including but
|
39 |
+
not limited to compiled object code, generated documentation,
|
40 |
+
and conversions to other media types.
|
41 |
+
|
42 |
+
"Work" shall mean the work of authorship, whether in Source or
|
43 |
+
Object form, made available under the License, as indicated by a
|
44 |
+
copyright notice that is included in or attached to the work
|
45 |
+
(an example is provided in the Appendix below).
|
46 |
+
|
47 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
48 |
+
form, that is based on (or derived from) the Work and for which the
|
49 |
+
editorial revisions, annotations, elaborations, or other modifications
|
50 |
+
represent, as a whole, an original work of authorship. For the purposes
|
51 |
+
of this License, Derivative Works shall not include works that remain
|
52 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
53 |
+
the Work and Derivative Works thereof.
|
54 |
+
|
55 |
+
"Contribution" shall mean any work of authorship, including
|
56 |
+
the original version of the Work and any modifications or additions
|
57 |
+
to that Work or Derivative Works thereof, that is intentionally
|
58 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
59 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
60 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
61 |
+
means any form of electronic, verbal, or written communication sent
|
62 |
+
to the Licensor or its representatives, including but not limited to
|
63 |
+
communication on electronic mailing lists, source code control systems,
|
64 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
65 |
+
Licensor for the purpose of discussing and improving the Work, but
|
66 |
+
excluding communication that is conspicuously marked or otherwise
|
67 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
68 |
+
|
69 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
70 |
+
on behalf of whom a Contribution has been received by Licensor and
|
71 |
+
subsequently incorporated within the Work.
|
72 |
+
|
73 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
copyright license to reproduce, prepare Derivative Works of,
|
77 |
+
publicly display, publicly perform, sublicense, and distribute the
|
78 |
+
Work and such Derivative Works in Source or Object form.
|
79 |
+
|
80 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
81 |
+
this License, each Contributor hereby grants to You a perpetual,
|
82 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
83 |
+
(except as stated in this section) patent license to make, have made,
|
84 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
85 |
+
where such license applies only to those patent claims licensable
|
86 |
+
by such Contributor that are necessarily infringed by their
|
87 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
88 |
+
with the Work to which such Contribution(s) was submitted. If You
|
89 |
+
institute patent litigation against any entity (including a
|
90 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
91 |
+
or a Contribution incorporated within the Work constitutes direct
|
92 |
+
or contributory patent infringement, then any patent licenses
|
93 |
+
granted to You under this License for that Work shall terminate
|
94 |
+
as of the date such litigation is filed.
|
95 |
+
|
96 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
97 |
+
Work or Derivative Works thereof in any medium, with or without
|
98 |
+
modifications, and in Source or Object form, provided that You
|
99 |
+
meet the following conditions:
|
100 |
+
|
101 |
+
(a) You must give any other recipients of the Work or
|
102 |
+
Derivative Works a copy of this License; and
|
103 |
+
|
104 |
+
(b) You must cause any modified files to carry prominent notices
|
105 |
+
stating that You changed the files; and
|
106 |
+
|
107 |
+
(c) You must retain, in the Source form of any Derivative Works
|
108 |
+
that You distribute, all copyright, patent, trademark, and
|
109 |
+
attribution notices from the Source form of the Work,
|
110 |
+
excluding those notices that do not pertain to any part of
|
111 |
+
the Derivative Works; and
|
112 |
+
|
113 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
114 |
+
distribution, then any Derivative Works that You distribute must
|
115 |
+
include a readable copy of the attribution notices contained
|
116 |
+
within such NOTICE file, excluding those notices that do not
|
117 |
+
pertain to any part of the Derivative Works, in at least one
|
118 |
+
of the following places: within a NOTICE text file distributed
|
119 |
+
as part of the Derivative Works; within the Source form or
|
120 |
+
documentation, if provided along with the Derivative Works; or,
|
121 |
+
within a display generated by the Derivative Works, if and
|
122 |
+
wherever such third-party notices normally appear. The contents
|
123 |
+
of the NOTICE file are for informational purposes only and
|
124 |
+
do not modify the License. You may add Your own attribution
|
125 |
+
notices within Derivative Works that You distribute, alongside
|
126 |
+
or as an addendum to the NOTICE text from the Work, provided
|
127 |
+
that such additional attribution notices cannot be construed
|
128 |
+
as modifying the License.
|
129 |
+
|
130 |
+
You may add Your own copyright statement to Your modifications and
|
131 |
+
may provide additional or different license terms and conditions
|
132 |
+
for use, reproduction, or distribution of Your modifications, or
|
133 |
+
for any such Derivative Works as a whole, provided Your use,
|
134 |
+
reproduction, and distribution of the Work otherwise complies with
|
135 |
+
the conditions stated in this License.
|
136 |
+
|
137 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
138 |
+
any Contribution intentionally submitted for inclusion in the Work
|
139 |
+
by You to the Licensor shall be under the terms and conditions of
|
140 |
+
this License, without any additional terms or conditions.
|
141 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
142 |
+
the terms of any separate license agreement you may have executed
|
143 |
+
with Licensor regarding such Contributions.
|
144 |
+
|
145 |
+
6. Trademarks. This License does not grant permission to use the trade
|
146 |
+
names, trademarks, service marks, or product names of the Licensor,
|
147 |
+
except as required for reasonable and customary use in describing the
|
148 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
149 |
+
|
150 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
151 |
+
agreed to in writing, Licensor provides the Work (and each
|
152 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
153 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
154 |
+
implied, including, without limitation, any warranties or conditions
|
155 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
156 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
157 |
+
appropriateness of using or redistributing the Work and assume any
|
158 |
+
risks associated with Your exercise of permissions under this License.
|
159 |
+
|
160 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
161 |
+
whether in tort (including negligence), contract, or otherwise,
|
162 |
+
unless required by applicable law (such as deliberate and grossly
|
163 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
164 |
+
liable to You for damages, including any direct, indirect, special,
|
165 |
+
incidental, or consequential damages of any character arising as a
|
166 |
+
result of this License or out of the use or inability to use the
|
167 |
+
Work (including but not limited to damages for loss of goodwill,
|
168 |
+
work stoppage, computer failure or malfunction, or any and all
|
169 |
+
other commercial damages or losses), even if such Contributor
|
170 |
+
has been advised of the possibility of such damages.
|
171 |
+
|
172 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
173 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
174 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
175 |
+
or other liability obligations and/or rights consistent with this
|
176 |
+
License. However, in accepting such obligations, You may act only
|
177 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
178 |
+
of any other Contributor, and only if You agree to indemnify,
|
179 |
+
defend, and hold each Contributor harmless for any liability
|
180 |
+
incurred by, or claims asserted against, such Contributor by reason
|
181 |
+
of your accepting any such warranty or additional liability.
|
182 |
+
|
183 |
+
END OF TERMS AND CONDITIONS
|
184 |
+
|
185 |
+
APPENDIX: How to apply the Apache License to your work.
|
186 |
+
|
187 |
+
To apply the Apache License to your work, attach the following
|
188 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
189 |
+
replaced with your own identifying information. (Don't include
|
190 |
+
the brackets!) The text should be enclosed in the appropriate
|
191 |
+
comment syntax for the file format. We also recommend that a
|
192 |
+
file or class name and description of purpose be included on the
|
193 |
+
same "printed page" as the copyright notice for easier
|
194 |
+
identification within third-party archives.
|
195 |
+
|
196 |
+
Copyright 2018-2023 OpenMMLab.
|
197 |
+
|
198 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
199 |
+
you may not use this file except in compliance with the License.
|
200 |
+
You may obtain a copy of the License at
|
201 |
+
|
202 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
203 |
+
|
204 |
+
Unless required by applicable law or agreed to in writing, software
|
205 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
206 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
207 |
+
See the License for the specific language governing permissions and
|
208 |
+
limitations under the License.
|
209 |
+
```
|
210 |
+
"""
|
211 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
212 |
+
import mmcv
|
213 |
+
import numpy as np
|
214 |
+
|
215 |
+
|
216 |
+
def palette_val(palette):
|
217 |
+
"""Convert palette to matplotlib palette.
|
218 |
+
|
219 |
+
Args:
|
220 |
+
palette List[tuple]: A list of color tuples.
|
221 |
+
|
222 |
+
Returns:
|
223 |
+
List[tuple[float]]: A list of RGB matplotlib color tuples.
|
224 |
+
"""
|
225 |
+
new_palette = []
|
226 |
+
for color in palette:
|
227 |
+
color = [c / 255 for c in color]
|
228 |
+
new_palette.append(tuple(color))
|
229 |
+
return new_palette
|
230 |
+
|
231 |
+
|
232 |
+
def get_palette(palette, num_classes):
|
233 |
+
"""Get palette from various inputs.
|
234 |
+
|
235 |
+
Args:
|
236 |
+
palette (list[tuple] | str | tuple | :obj:`Color`): palette inputs.
|
237 |
+
num_classes (int): the number of classes.
|
238 |
+
|
239 |
+
Returns:
|
240 |
+
list[tuple[int]]: A list of color tuples.
|
241 |
+
"""
|
242 |
+
assert isinstance(num_classes, int)
|
243 |
+
|
244 |
+
if isinstance(palette, list):
|
245 |
+
dataset_palette = palette
|
246 |
+
elif isinstance(palette, tuple):
|
247 |
+
dataset_palette = [palette] * num_classes
|
248 |
+
elif palette == 'random' or palette is None:
|
249 |
+
state = np.random.get_state()
|
250 |
+
# random color
|
251 |
+
np.random.seed(42)
|
252 |
+
palette = np.random.randint(0, 256, size=(num_classes, 3))
|
253 |
+
np.random.set_state(state)
|
254 |
+
dataset_palette = [tuple(c) for c in palette]
|
255 |
+
elif palette == 'coco':
|
256 |
+
from mmdet.datasets import CocoDataset, CocoPanopticDataset
|
257 |
+
dataset_palette = CocoDataset.PALETTE
|
258 |
+
if len(dataset_palette) < num_classes:
|
259 |
+
dataset_palette = CocoPanopticDataset.PALETTE
|
260 |
+
elif palette == 'citys':
|
261 |
+
from mmdet.datasets import CityscapesDataset
|
262 |
+
dataset_palette = CityscapesDataset.PALETTE
|
263 |
+
elif palette == 'voc':
|
264 |
+
from mmdet.datasets import VOCDataset
|
265 |
+
dataset_palette = VOCDataset.PALETTE
|
266 |
+
elif mmcv.is_str(palette):
|
267 |
+
dataset_palette = [mmcv.color_val(palette)[::-1]] * num_classes
|
268 |
+
else:
|
269 |
+
raise TypeError(f'Invalid type for palette: {type(palette)}')
|
270 |
+
|
271 |
+
assert len(dataset_palette) >= num_classes, \
|
272 |
+
'The length of palette should not be less than `num_classes`.'
|
273 |
+
return dataset_palette
|
patch
ADDED
@@ -0,0 +1,834 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diff --git a/configs/cbnet/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_giou_4conv1f_coco.py b/configs/cbnet/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_giou_4conv1f_coco.py
|
2 |
+
index 167d4379..7c0bd239 100644
|
3 |
+
--- a/configs/cbnet/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_giou_4conv1f_coco.py
|
4 |
+
+++ b/configs/cbnet/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_giou_4conv1f_coco.py
|
5 |
+
@@ -2,9 +2,9 @@ _base_ = '../res2net/cascade_rcnn_r2_101_fpn_20e_coco.py'
|
6 |
+
|
7 |
+
model = dict(
|
8 |
+
backbone=dict(
|
9 |
+
- type='CBRes2Net',
|
10 |
+
+ type='CBRes2Net',
|
11 |
+
cb_del_stages=1,
|
12 |
+
- cb_inplanes=[64, 256, 512, 1024, 2048],
|
13 |
+
+ cb_inplanes=[64, 256, 512, 1024, 2048],
|
14 |
+
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
|
15 |
+
stage_with_dcn=(False, True, True, True)
|
16 |
+
),
|
17 |
+
@@ -28,7 +28,7 @@ model = dict(
|
18 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
19 |
+
reg_class_agnostic=False,
|
20 |
+
reg_decoded_bbox=True,
|
21 |
+
- norm_cfg=dict(type='SyncBN', requires_grad=True),
|
22 |
+
+ norm_cfg=dict(type='BN', requires_grad=True),
|
23 |
+
loss_cls=dict(
|
24 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
25 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=10.0)),
|
26 |
+
@@ -47,7 +47,7 @@ model = dict(
|
27 |
+
target_stds=[0.05, 0.05, 0.1, 0.1]),
|
28 |
+
reg_class_agnostic=False,
|
29 |
+
reg_decoded_bbox=True,
|
30 |
+
- norm_cfg=dict(type='SyncBN', requires_grad=True),
|
31 |
+
+ norm_cfg=dict(type='BN', requires_grad=True),
|
32 |
+
loss_cls=dict(
|
33 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
34 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=10.0)),
|
35 |
+
@@ -66,7 +66,7 @@ model = dict(
|
36 |
+
target_stds=[0.033, 0.033, 0.067, 0.067]),
|
37 |
+
reg_class_agnostic=False,
|
38 |
+
reg_decoded_bbox=True,
|
39 |
+
- norm_cfg=dict(type='SyncBN', requires_grad=True),
|
40 |
+
+ norm_cfg=dict(type='BN', requires_grad=True),
|
41 |
+
loss_cls=dict(
|
42 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
43 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=10.0))
|
44 |
+
diff --git a/configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.py b/configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.py
|
45 |
+
index 51edfd62..a7434c5d 100644
|
46 |
+
--- a/configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.py
|
47 |
+
+++ b/configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.py
|
48 |
+
@@ -18,7 +18,7 @@ model = dict(
|
49 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
50 |
+
reg_class_agnostic=True,
|
51 |
+
reg_decoded_bbox=True,
|
52 |
+
- norm_cfg=dict(type='SyncBN', requires_grad=True),
|
53 |
+
+ norm_cfg=dict(type='BN', requires_grad=True),
|
54 |
+
loss_cls=dict(
|
55 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
56 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=10.0)),
|
57 |
+
@@ -37,7 +37,7 @@ model = dict(
|
58 |
+
target_stds=[0.05, 0.05, 0.1, 0.1]),
|
59 |
+
reg_class_agnostic=True,
|
60 |
+
reg_decoded_bbox=True,
|
61 |
+
- norm_cfg=dict(type='SyncBN', requires_grad=True),
|
62 |
+
+ norm_cfg=dict(type='BN', requires_grad=True),
|
63 |
+
loss_cls=dict(
|
64 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
65 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=10.0)),
|
66 |
+
@@ -56,7 +56,7 @@ model = dict(
|
67 |
+
target_stds=[0.033, 0.033, 0.067, 0.067]),
|
68 |
+
reg_class_agnostic=True,
|
69 |
+
reg_decoded_bbox=True,
|
70 |
+
- norm_cfg=dict(type='SyncBN', requires_grad=True),
|
71 |
+
+ norm_cfg=dict(type='BN', requires_grad=True),
|
72 |
+
loss_cls=dict(
|
73 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
74 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=10.0))
|
75 |
+
diff --git a/mmdet/__init__.py b/mmdet/__init__.py
|
76 |
+
index 646ee84e..9e846286 100644
|
77 |
+
--- a/mmdet/__init__.py
|
78 |
+
+++ b/mmdet/__init__.py
|
79 |
+
@@ -20,9 +20,9 @@ mmcv_maximum_version = '1.4.0'
|
80 |
+
mmcv_version = digit_version(mmcv.__version__)
|
81 |
+
|
82 |
+
|
83 |
+
-assert (mmcv_version >= digit_version(mmcv_minimum_version)
|
84 |
+
- and mmcv_version <= digit_version(mmcv_maximum_version)), \
|
85 |
+
- f'MMCV=={mmcv.__version__} is used but incompatible. ' \
|
86 |
+
- f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.'
|
87 |
+
+#assert (mmcv_version >= digit_version(mmcv_minimum_version)
|
88 |
+
+# and mmcv_version <= digit_version(mmcv_maximum_version)), \
|
89 |
+
+# f'MMCV=={mmcv.__version__} is used but incompatible. ' \
|
90 |
+
+# f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.'
|
91 |
+
|
92 |
+
__all__ = ['__version__', 'short_version']
|
93 |
+
diff --git a/mmdet/core/mask/structures.py b/mmdet/core/mask/structures.py
|
94 |
+
index 6f5a62ae..a9d0ebb4 100644
|
95 |
+
--- a/mmdet/core/mask/structures.py
|
96 |
+
+++ b/mmdet/core/mask/structures.py
|
97 |
+
@@ -1,3 +1,4 @@
|
98 |
+
+# Copyright (c) OpenMMLab. All rights reserved.
|
99 |
+
from abc import ABCMeta, abstractmethod
|
100 |
+
|
101 |
+
import cv2
|
102 |
+
@@ -528,6 +529,21 @@ class BitmapMasks(BaseInstanceMasks):
|
103 |
+
self = cls(masks, height=height, width=width)
|
104 |
+
return self
|
105 |
+
|
106 |
+
+ def get_bboxes(self):
|
107 |
+
+ num_masks = len(self)
|
108 |
+
+ boxes = np.zeros((num_masks, 4), dtype=np.float32)
|
109 |
+
+ x_any = self.masks.any(axis=1)
|
110 |
+
+ y_any = self.masks.any(axis=2)
|
111 |
+
+ for idx in range(num_masks):
|
112 |
+
+ x = np.where(x_any[idx, :])[0]
|
113 |
+
+ y = np.where(y_any[idx, :])[0]
|
114 |
+
+ if len(x) > 0 and len(y) > 0:
|
115 |
+
+ # use +1 for x_max and y_max so that the right and bottom
|
116 |
+
+ # boundary of instance masks are fully included by the box
|
117 |
+
+ boxes[idx, :] = np.array([x[0], y[0], x[-1] + 1, y[-1] + 1],
|
118 |
+
+ dtype=np.float32)
|
119 |
+
+ return boxes
|
120 |
+
+
|
121 |
+
|
122 |
+
class PolygonMasks(BaseInstanceMasks):
|
123 |
+
"""This class represents masks in the form of polygons.
|
124 |
+
@@ -637,8 +653,8 @@ class PolygonMasks(BaseInstanceMasks):
|
125 |
+
resized_poly = []
|
126 |
+
for p in poly_per_obj:
|
127 |
+
p = p.copy()
|
128 |
+
- p[0::2] *= w_scale
|
129 |
+
- p[1::2] *= h_scale
|
130 |
+
+ p[0::2] = p[0::2] * w_scale
|
131 |
+
+ p[1::2] = p[1::2] * h_scale
|
132 |
+
resized_poly.append(p)
|
133 |
+
resized_masks.append(resized_poly)
|
134 |
+
resized_masks = PolygonMasks(resized_masks, *out_shape)
|
135 |
+
@@ -690,8 +706,8 @@ class PolygonMasks(BaseInstanceMasks):
|
136 |
+
for p in poly_per_obj:
|
137 |
+
# pycocotools will clip the boundary
|
138 |
+
p = p.copy()
|
139 |
+
- p[0::2] -= bbox[0]
|
140 |
+
- p[1::2] -= bbox[1]
|
141 |
+
+ p[0::2] = p[0::2] - bbox[0]
|
142 |
+
+ p[1::2] = p[1::2] - bbox[1]
|
143 |
+
cropped_poly_per_obj.append(p)
|
144 |
+
cropped_masks.append(cropped_poly_per_obj)
|
145 |
+
cropped_masks = PolygonMasks(cropped_masks, h, w)
|
146 |
+
@@ -736,12 +752,12 @@ class PolygonMasks(BaseInstanceMasks):
|
147 |
+
p = p.copy()
|
148 |
+
# crop
|
149 |
+
# pycocotools will clip the boundary
|
150 |
+
- p[0::2] -= bbox[0]
|
151 |
+
- p[1::2] -= bbox[1]
|
152 |
+
+ p[0::2] = p[0::2] - bbox[0]
|
153 |
+
+ p[1::2] = p[1::2] - bbox[1]
|
154 |
+
|
155 |
+
# resize
|
156 |
+
- p[0::2] *= w_scale
|
157 |
+
- p[1::2] *= h_scale
|
158 |
+
+ p[0::2] = p[0::2] * w_scale
|
159 |
+
+ p[1::2] = p[1::2] * h_scale
|
160 |
+
resized_mask.append(p)
|
161 |
+
resized_masks.append(resized_mask)
|
162 |
+
return PolygonMasks(resized_masks, *out_shape)
|
163 |
+
@@ -944,6 +960,7 @@ class PolygonMasks(BaseInstanceMasks):
|
164 |
+
a list of vertices, in CCW order.
|
165 |
+
"""
|
166 |
+
from scipy.stats import truncnorm
|
167 |
+
+
|
168 |
+
# Generate around the unit circle
|
169 |
+
cx, cy = (0.0, 0.0)
|
170 |
+
radius = 1
|
171 |
+
@@ -1019,6 +1036,24 @@ class PolygonMasks(BaseInstanceMasks):
|
172 |
+
self = cls(masks, height, width)
|
173 |
+
return self
|
174 |
+
|
175 |
+
+ def get_bboxes(self):
|
176 |
+
+ num_masks = len(self)
|
177 |
+
+ boxes = np.zeros((num_masks, 4), dtype=np.float32)
|
178 |
+
+ for idx, poly_per_obj in enumerate(self.masks):
|
179 |
+
+ # simply use a number that is big enough for comparison with
|
180 |
+
+ # coordinates
|
181 |
+
+ xy_min = np.array([self.width * 2, self.height * 2],
|
182 |
+
+ dtype=np.float32)
|
183 |
+
+ xy_max = np.zeros(2, dtype=np.float32)
|
184 |
+
+ for p in poly_per_obj:
|
185 |
+
+ xy = np.array(p).reshape(-1, 2).astype(np.float32)
|
186 |
+
+ xy_min = np.minimum(xy_min, np.min(xy, axis=0))
|
187 |
+
+ xy_max = np.maximum(xy_max, np.max(xy, axis=0))
|
188 |
+
+ boxes[idx, :2] = xy_min
|
189 |
+
+ boxes[idx, 2:] = xy_max
|
190 |
+
+
|
191 |
+
+ return boxes
|
192 |
+
+
|
193 |
+
|
194 |
+
def polygon_to_bitmap(polygons, height, width):
|
195 |
+
"""Convert masks from the form of polygons to bitmaps.
|
196 |
+
@@ -1035,3 +1070,33 @@ def polygon_to_bitmap(polygons, height, width):
|
197 |
+
rle = maskUtils.merge(rles)
|
198 |
+
bitmap_mask = maskUtils.decode(rle).astype(np.bool)
|
199 |
+
return bitmap_mask
|
200 |
+
+
|
201 |
+
+
|
202 |
+
+def bitmap_to_polygon(bitmap):
|
203 |
+
+ """Convert masks from the form of bitmaps to polygons.
|
204 |
+
+
|
205 |
+
+ Args:
|
206 |
+
+ bitmap (ndarray): masks in bitmap representation.
|
207 |
+
+
|
208 |
+
+ Return:
|
209 |
+
+ list[ndarray]: the converted mask in polygon representation.
|
210 |
+
+ bool: whether the mask has holes.
|
211 |
+
+ """
|
212 |
+
+ bitmap = np.ascontiguousarray(bitmap).astype(np.uint8)
|
213 |
+
+ # cv2.RETR_CCOMP: retrieves all of the contours and organizes them
|
214 |
+
+ # into a two-level hierarchy. At the top level, there are external
|
215 |
+
+ # boundaries of the components. At the second level, there are
|
216 |
+
+ # boundaries of the holes. If there is another contour inside a hole
|
217 |
+
+ # of a connected component, it is still put at the top level.
|
218 |
+
+ # cv2.CHAIN_APPROX_NONE: stores absolutely all the contour points.
|
219 |
+
+ outs = cv2.findContours(bitmap, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
|
220 |
+
+ contours = outs[-2]
|
221 |
+
+ hierarchy = outs[-1]
|
222 |
+
+ if hierarchy is None:
|
223 |
+
+ return [], False
|
224 |
+
+ # hierarchy[i]: 4 elements, for the indexes of next, previous,
|
225 |
+
+ # parent, or nested contours. If there is no corresponding contour,
|
226 |
+
+ # it will be -1.
|
227 |
+
+ with_hole = (hierarchy.reshape(-1, 4)[:, 3] >= 0).any()
|
228 |
+
+ contours = [c.reshape(-1, 2) for c in contours]
|
229 |
+
+ return contours, with_hole
|
230 |
+
diff --git a/mmdet/core/visualization/image.py b/mmdet/core/visualization/image.py
|
231 |
+
index 5a148384..66f82a38 100644
|
232 |
+
--- a/mmdet/core/visualization/image.py
|
233 |
+
+++ b/mmdet/core/visualization/image.py
|
234 |
+
@@ -1,3 +1,5 @@
|
235 |
+
+# Copyright (c) OpenMMLab. All rights reserved.
|
236 |
+
+import cv2
|
237 |
+
import matplotlib.pyplot as plt
|
238 |
+
import mmcv
|
239 |
+
import numpy as np
|
240 |
+
@@ -5,17 +7,25 @@ import pycocotools.mask as mask_util
|
241 |
+
from matplotlib.collections import PatchCollection
|
242 |
+
from matplotlib.patches import Polygon
|
243 |
+
|
244 |
+
+#from mmdet.core.evaluation.panoptic_utils import INSTANCE_OFFSET
|
245 |
+
+from ..mask.structures import bitmap_to_polygon
|
246 |
+
from ..utils import mask2ndarray
|
247 |
+
+from .palette import get_palette, palette_val
|
248 |
+
+
|
249 |
+
+__all__ = [
|
250 |
+
+ 'color_val_matplotlib', 'draw_masks', 'draw_bboxes', 'draw_labels',
|
251 |
+
+ 'imshow_det_bboxes', 'imshow_gt_det_bboxes'
|
252 |
+
+]
|
253 |
+
|
254 |
+
EPS = 1e-2
|
255 |
+
|
256 |
+
|
257 |
+
def color_val_matplotlib(color):
|
258 |
+
"""Convert various input in BGR order to normalized RGB matplotlib color
|
259 |
+
- tuples,
|
260 |
+
+ tuples.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
- color (:obj:`Color`/str/tuple/int/ndarray): Color inputs
|
264 |
+
+ color (:obj`Color` | str | tuple | int | ndarray): Color inputs.
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
tuple[float]: A tuple of 3 normalized floats indicating RGB channels.
|
268 |
+
@@ -25,9 +35,177 @@ def color_val_matplotlib(color):
|
269 |
+
return tuple(color)
|
270 |
+
|
271 |
+
|
272 |
+
+def _get_adaptive_scales(areas, min_area=800, max_area=30000):
|
273 |
+
+ """Get adaptive scales according to areas.
|
274 |
+
+
|
275 |
+
+ The scale range is [0.5, 1.0]. When the area is less than
|
276 |
+
+ ``'min_area'``, the scale is 0.5 while the area is larger than
|
277 |
+
+ ``'max_area'``, the scale is 1.0.
|
278 |
+
+
|
279 |
+
+ Args:
|
280 |
+
+ areas (ndarray): The areas of bboxes or masks with the
|
281 |
+
+ shape of (n, ).
|
282 |
+
+ min_area (int): Lower bound areas for adaptive scales.
|
283 |
+
+ Default: 800.
|
284 |
+
+ max_area (int): Upper bound areas for adaptive scales.
|
285 |
+
+ Default: 30000.
|
286 |
+
+
|
287 |
+
+ Returns:
|
288 |
+
+ ndarray: The adaotive scales with the shape of (n, ).
|
289 |
+
+ """
|
290 |
+
+ scales = 0.5 + (areas - min_area) / (max_area - min_area)
|
291 |
+
+ scales = np.clip(scales, 0.5, 1.0)
|
292 |
+
+ return scales
|
293 |
+
+
|
294 |
+
+
|
295 |
+
+def _get_bias_color(base, max_dist=30):
|
296 |
+
+ """Get different colors for each masks.
|
297 |
+
+
|
298 |
+
+ Get different colors for each masks by adding a bias
|
299 |
+
+ color to the base category color.
|
300 |
+
+ Args:
|
301 |
+
+ base (ndarray): The base category color with the shape
|
302 |
+
+ of (3, ).
|
303 |
+
+ max_dist (int): The max distance of bias. Default: 30.
|
304 |
+
+
|
305 |
+
+ Returns:
|
306 |
+
+ ndarray: The new color for a mask with the shape of (3, ).
|
307 |
+
+ """
|
308 |
+
+ new_color = base + np.random.randint(
|
309 |
+
+ low=-max_dist, high=max_dist + 1, size=3)
|
310 |
+
+ return np.clip(new_color, 0, 255, new_color)
|
311 |
+
+
|
312 |
+
+
|
313 |
+
+def draw_bboxes(ax, bboxes, color='g', alpha=0.8, thickness=2):
|
314 |
+
+ """Draw bounding boxes on the axes.
|
315 |
+
+
|
316 |
+
+ Args:
|
317 |
+
+ ax (matplotlib.Axes): The input axes.
|
318 |
+
+ bboxes (ndarray): The input bounding boxes with the shape
|
319 |
+
+ of (n, 4).
|
320 |
+
+ color (list[tuple] | matplotlib.color): the colors for each
|
321 |
+
+ bounding boxes.
|
322 |
+
+ alpha (float): Transparency of bounding boxes. Default: 0.8.
|
323 |
+
+ thickness (int): Thickness of lines. Default: 2.
|
324 |
+
+
|
325 |
+
+ Returns:
|
326 |
+
+ matplotlib.Axes: The result axes.
|
327 |
+
+ """
|
328 |
+
+ polygons = []
|
329 |
+
+ for i, bbox in enumerate(bboxes):
|
330 |
+
+ bbox_int = bbox.astype(np.int32)
|
331 |
+
+ poly = [[bbox_int[0], bbox_int[1]], [bbox_int[0], bbox_int[3]],
|
332 |
+
+ [bbox_int[2], bbox_int[3]], [bbox_int[2], bbox_int[1]]]
|
333 |
+
+ np_poly = np.array(poly).reshape((4, 2))
|
334 |
+
+ polygons.append(Polygon(np_poly))
|
335 |
+
+ p = PatchCollection(
|
336 |
+
+ polygons,
|
337 |
+
+ facecolor='none',
|
338 |
+
+ edgecolors=color,
|
339 |
+
+ linewidths=thickness,
|
340 |
+
+ alpha=alpha)
|
341 |
+
+ ax.add_collection(p)
|
342 |
+
+
|
343 |
+
+ return ax
|
344 |
+
+
|
345 |
+
+
|
346 |
+
+def draw_labels(ax,
|
347 |
+
+ labels,
|
348 |
+
+ positions,
|
349 |
+
+ scores=None,
|
350 |
+
+ class_names=None,
|
351 |
+
+ color='w',
|
352 |
+
+ font_size=8,
|
353 |
+
+ scales=None,
|
354 |
+
+ horizontal_alignment='left'):
|
355 |
+
+ """Draw labels on the axes.
|
356 |
+
+
|
357 |
+
+ Args:
|
358 |
+
+ ax (matplotlib.Axes): The input axes.
|
359 |
+
+ labels (ndarray): The labels with the shape of (n, ).
|
360 |
+
+ positions (ndarray): The positions to draw each labels.
|
361 |
+
+ scores (ndarray): The scores for each labels.
|
362 |
+
+ class_names (list[str]): The class names.
|
363 |
+
+ color (list[tuple] | matplotlib.color): The colors for labels.
|
364 |
+
+ font_size (int): Font size of texts. Default: 8.
|
365 |
+
+ scales (list[float]): Scales of texts. Default: None.
|
366 |
+
+ horizontal_alignment (str): The horizontal alignment method of
|
367 |
+
+ texts. Default: 'left'.
|
368 |
+
+
|
369 |
+
+ Returns:
|
370 |
+
+ matplotlib.Axes: The result axes.
|
371 |
+
+ """
|
372 |
+
+ for i, (pos, label) in enumerate(zip(positions, labels)):
|
373 |
+
+ label_text = class_names[
|
374 |
+
+ label] if class_names is not None else f'class {label}'
|
375 |
+
+ if scores is not None:
|
376 |
+
+ label_text += f'|{scores[i]:.02f}'
|
377 |
+
+ text_color = color[i] if isinstance(color, list) else color
|
378 |
+
+
|
379 |
+
+ font_size_mask = font_size if scales is None else font_size * scales[i]
|
380 |
+
+ ax.text(
|
381 |
+
+ pos[0],
|
382 |
+
+ pos[1],
|
383 |
+
+ f'{label_text}',
|
384 |
+
+ bbox={
|
385 |
+
+ 'facecolor': 'black',
|
386 |
+
+ 'alpha': 0.8,
|
387 |
+
+ 'pad': 0.7,
|
388 |
+
+ 'edgecolor': 'none'
|
389 |
+
+ },
|
390 |
+
+ color=text_color,
|
391 |
+
+ fontsize=font_size_mask,
|
392 |
+
+ verticalalignment='top',
|
393 |
+
+ horizontalalignment=horizontal_alignment)
|
394 |
+
+
|
395 |
+
+ return ax
|
396 |
+
+
|
397 |
+
+
|
398 |
+
+def draw_masks(ax, img, masks, color=None, with_edge=True, alpha=0.8):
|
399 |
+
+ """Draw masks on the image and their edges on the axes.
|
400 |
+
+
|
401 |
+
+ Args:
|
402 |
+
+ ax (matplotlib.Axes): The input axes.
|
403 |
+
+ img (ndarray): The image with the shape of (3, h, w).
|
404 |
+
+ masks (ndarray): The masks with the shape of (n, h, w).
|
405 |
+
+ color (ndarray): The colors for each masks with the shape
|
406 |
+
+ of (n, 3).
|
407 |
+
+ with_edge (bool): Whether to draw edges. Default: True.
|
408 |
+
+ alpha (float): Transparency of bounding boxes. Default: 0.8.
|
409 |
+
+
|
410 |
+
+ Returns:
|
411 |
+
+ matplotlib.Axes: The result axes.
|
412 |
+
+ ndarray: The result image.
|
413 |
+
+ """
|
414 |
+
+ taken_colors = set([0, 0, 0])
|
415 |
+
+ if color is None:
|
416 |
+
+ random_colors = np.random.randint(0, 255, (masks.size(0), 3))
|
417 |
+
+ color = [tuple(c) for c in random_colors]
|
418 |
+
+ color = np.array(color, dtype=np.uint8)
|
419 |
+
+ polygons = []
|
420 |
+
+ for i, mask in enumerate(masks):
|
421 |
+
+ if with_edge:
|
422 |
+
+ contours, _ = bitmap_to_polygon(mask)
|
423 |
+
+ polygons += [Polygon(c) for c in contours]
|
424 |
+
+
|
425 |
+
+ color_mask = color[i]
|
426 |
+
+ while tuple(color_mask) in taken_colors:
|
427 |
+
+ color_mask = _get_bias_color(color_mask)
|
428 |
+
+ taken_colors.add(tuple(color_mask))
|
429 |
+
+
|
430 |
+
+ mask = mask.astype(bool)
|
431 |
+
+ img[mask] = img[mask] * (1 - alpha) + color_mask * alpha
|
432 |
+
+
|
433 |
+
+ p = PatchCollection(
|
434 |
+
+ polygons, facecolor='none', edgecolors='w', linewidths=1, alpha=0.8)
|
435 |
+
+ ax.add_collection(p)
|
436 |
+
+
|
437 |
+
+ return ax, img
|
438 |
+
+
|
439 |
+
+
|
440 |
+
def imshow_det_bboxes(img,
|
441 |
+
- bboxes,
|
442 |
+
- labels,
|
443 |
+
+ bboxes=None,
|
444 |
+
+ labels=None,
|
445 |
+
segms=None,
|
446 |
+
class_names=None,
|
447 |
+
score_thr=0,
|
448 |
+
@@ -35,7 +213,7 @@ def imshow_det_bboxes(img,
|
449 |
+
text_color='green',
|
450 |
+
mask_color=None,
|
451 |
+
thickness=2,
|
452 |
+
- font_size=13,
|
453 |
+
+ font_size=8,
|
454 |
+
win_name='',
|
455 |
+
show=True,
|
456 |
+
wait_time=0,
|
457 |
+
@@ -43,43 +221,51 @@ def imshow_det_bboxes(img,
|
458 |
+
"""Draw bboxes and class labels (with scores) on an image.
|
459 |
+
|
460 |
+
Args:
|
461 |
+
- img (str or ndarray): The image to be displayed.
|
462 |
+
+ img (str | ndarray): The image to be displayed.
|
463 |
+
bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or
|
464 |
+
(n, 5).
|
465 |
+
labels (ndarray): Labels of bboxes.
|
466 |
+
- segms (ndarray or None): Masks, shaped (n,h,w) or None
|
467 |
+
+ segms (ndarray | None): Masks, shaped (n,h,w) or None.
|
468 |
+
class_names (list[str]): Names of each classes.
|
469 |
+
- score_thr (float): Minimum score of bboxes to be shown. Default: 0
|
470 |
+
- bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
|
471 |
+
- The tuple of color should be in BGR order. Default: 'green'
|
472 |
+
- text_color (str or tuple(int) or :obj:`Color`):Color of texts.
|
473 |
+
- The tuple of color should be in BGR order. Default: 'green'
|
474 |
+
- mask_color (str or tuple(int) or :obj:`Color`, optional):
|
475 |
+
- Color of masks. The tuple of color should be in BGR order.
|
476 |
+
- Default: None
|
477 |
+
- thickness (int): Thickness of lines. Default: 2
|
478 |
+
- font_size (int): Font size of texts. Default: 13
|
479 |
+
- show (bool): Whether to show the image. Default: True
|
480 |
+
- win_name (str): The window name. Default: ''
|
481 |
+
+ score_thr (float): Minimum score of bboxes to be shown. Default: 0.
|
482 |
+
+ bbox_color (list[tuple] | tuple | str | None): Colors of bbox lines.
|
483 |
+
+ If a single color is given, it will be applied to all classes.
|
484 |
+
+ The tuple of color should be in RGB order. Default: 'green'.
|
485 |
+
+ text_color (list[tuple] | tuple | str | None): Colors of texts.
|
486 |
+
+ If a single color is given, it will be applied to all classes.
|
487 |
+
+ The tuple of color should be in RGB order. Default: 'green'.
|
488 |
+
+ mask_color (list[tuple] | tuple | str | None, optional): Colors of
|
489 |
+
+ masks. If a single color is given, it will be applied to all
|
490 |
+
+ classes. The tuple of color should be in RGB order.
|
491 |
+
+ Default: None.
|
492 |
+
+ thickness (int): Thickness of lines. Default: 2.
|
493 |
+
+ font_size (int): Font size of texts. Default: 13.
|
494 |
+
+ show (bool): Whether to show the image. Default: True.
|
495 |
+
+ win_name (str): The window name. Default: ''.
|
496 |
+
wait_time (float): Value of waitKey param. Default: 0.
|
497 |
+
out_file (str, optional): The filename to write the image.
|
498 |
+
- Default: None
|
499 |
+
+ Default: None.
|
500 |
+
|
501 |
+
Returns:
|
502 |
+
ndarray: The image with bboxes drawn on it.
|
503 |
+
"""
|
504 |
+
- assert bboxes.ndim == 2, \
|
505 |
+
+ assert bboxes is None or bboxes.ndim == 2, \
|
506 |
+
f' bboxes ndim should be 2, but its ndim is {bboxes.ndim}.'
|
507 |
+
assert labels.ndim == 1, \
|
508 |
+
f' labels ndim should be 1, but its ndim is {labels.ndim}.'
|
509 |
+
- assert bboxes.shape[0] == labels.shape[0], \
|
510 |
+
- 'bboxes.shape[0] and labels.shape[0] should have the same length.'
|
511 |
+
- assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5, \
|
512 |
+
+ assert bboxes is None or bboxes.shape[1] == 4 or bboxes.shape[1] == 5, \
|
513 |
+
f' bboxes.shape[1] should be 4 or 5, but its {bboxes.shape[1]}.'
|
514 |
+
+ assert bboxes is None or bboxes.shape[0] <= labels.shape[0], \
|
515 |
+
+ 'labels.shape[0] should not be less than bboxes.shape[0].'
|
516 |
+
+ assert segms is None or segms.shape[0] == labels.shape[0], \
|
517 |
+
+ 'segms.shape[0] and labels.shape[0] should have the same length.'
|
518 |
+
+ assert segms is not None or bboxes is not None, \
|
519 |
+
+ 'segms and bboxes should not be None at the same time.'
|
520 |
+
+
|
521 |
+
img = mmcv.imread(img).astype(np.uint8)
|
522 |
+
|
523 |
+
if score_thr > 0:
|
524 |
+
- assert bboxes.shape[1] == 5
|
525 |
+
+ assert bboxes is not None and bboxes.shape[1] == 5
|
526 |
+
scores = bboxes[:, -1]
|
527 |
+
inds = scores > score_thr
|
528 |
+
bboxes = bboxes[inds, :]
|
529 |
+
@@ -87,25 +273,6 @@ def imshow_det_bboxes(img,
|
530 |
+
if segms is not None:
|
531 |
+
segms = segms[inds, ...]
|
532 |
+
|
533 |
+
- mask_colors = []
|
534 |
+
- if labels.shape[0] > 0:
|
535 |
+
- if mask_color is None:
|
536 |
+
- # random color
|
537 |
+
- np.random.seed(42)
|
538 |
+
- mask_colors = [
|
539 |
+
- np.random.randint(0, 256, (1, 3), dtype=np.uint8)
|
540 |
+
- for _ in range(max(labels) + 1)
|
541 |
+
- ]
|
542 |
+
- else:
|
543 |
+
- # specify color
|
544 |
+
- mask_colors = [
|
545 |
+
- np.array(mmcv.color_val(mask_color)[::-1], dtype=np.uint8)
|
546 |
+
- ] * (
|
547 |
+
- max(labels) + 1)
|
548 |
+
-
|
549 |
+
- bbox_color = color_val_matplotlib(bbox_color)
|
550 |
+
- text_color = color_val_matplotlib(text_color)
|
551 |
+
-
|
552 |
+
img = mmcv.bgr2rgb(img)
|
553 |
+
width, height = img.shape[1], img.shape[0]
|
554 |
+
img = np.ascontiguousarray(img)
|
555 |
+
@@ -123,44 +290,64 @@ def imshow_det_bboxes(img,
|
556 |
+
ax = plt.gca()
|
557 |
+
ax.axis('off')
|
558 |
+
|
559 |
+
- polygons = []
|
560 |
+
- color = []
|
561 |
+
- for i, (bbox, label) in enumerate(zip(bboxes, labels)):
|
562 |
+
- bbox_int = bbox.astype(np.int32)
|
563 |
+
- poly = [[bbox_int[0], bbox_int[1]], [bbox_int[0], bbox_int[3]],
|
564 |
+
- [bbox_int[2], bbox_int[3]], [bbox_int[2], bbox_int[1]]]
|
565 |
+
- np_poly = np.array(poly).reshape((4, 2))
|
566 |
+
- polygons.append(Polygon(np_poly))
|
567 |
+
- color.append(bbox_color)
|
568 |
+
- label_text = class_names[
|
569 |
+
- label] if class_names is not None else f'class {label}'
|
570 |
+
- if len(bbox) > 4:
|
571 |
+
- label_text += f'|{bbox[-1]:.02f}'
|
572 |
+
- ax.text(
|
573 |
+
- bbox_int[0],
|
574 |
+
- bbox_int[1],
|
575 |
+
- f'{label_text}',
|
576 |
+
- bbox={
|
577 |
+
- 'facecolor': 'black',
|
578 |
+
- 'alpha': 0.8,
|
579 |
+
- 'pad': 0.7,
|
580 |
+
- 'edgecolor': 'none'
|
581 |
+
- },
|
582 |
+
- color=text_color,
|
583 |
+
- fontsize=font_size,
|
584 |
+
- verticalalignment='top',
|
585 |
+
- horizontalalignment='left')
|
586 |
+
- if segms is not None:
|
587 |
+
- color_mask = mask_colors[labels[i]]
|
588 |
+
- mask = segms[i].astype(bool)
|
589 |
+
- img[mask] = img[mask] * 0.5 + color_mask * 0.5
|
590 |
+
+ max_label = int(max(labels) if len(labels) > 0 else 0)
|
591 |
+
+ text_palette = palette_val(get_palette(text_color, max_label + 1))
|
592 |
+
+ text_colors = [text_palette[label] for label in labels]
|
593 |
+
+
|
594 |
+
+ num_bboxes = 0
|
595 |
+
+ if bboxes is not None:
|
596 |
+
+ num_bboxes = bboxes.shape[0]
|
597 |
+
+ bbox_palette = palette_val(get_palette(bbox_color, max_label + 1))
|
598 |
+
+ colors = [bbox_palette[label] for label in labels[:num_bboxes]]
|
599 |
+
+ draw_bboxes(ax, bboxes, colors, alpha=0.8, thickness=thickness)
|
600 |
+
+
|
601 |
+
+ horizontal_alignment = 'left'
|
602 |
+
+ positions = bboxes[:, :2].astype(np.int32) + thickness
|
603 |
+
+ areas = (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0])
|
604 |
+
+ scales = _get_adaptive_scales(areas)
|
605 |
+
+ scores = bboxes[:, 4] if bboxes.shape[1] == 5 else None
|
606 |
+
+ draw_labels(
|
607 |
+
+ ax,
|
608 |
+
+ labels[:num_bboxes],
|
609 |
+
+ positions,
|
610 |
+
+ scores=scores,
|
611 |
+
+ class_names=class_names,
|
612 |
+
+ color=text_colors,
|
613 |
+
+ font_size=font_size,
|
614 |
+
+ scales=scales,
|
615 |
+
+ horizontal_alignment=horizontal_alignment)
|
616 |
+
+
|
617 |
+
+ if segms is not None:
|
618 |
+
+ mask_palette = get_palette(mask_color, max_label + 1)
|
619 |
+
+ colors = [mask_palette[label] for label in labels]
|
620 |
+
+ colors = np.array(colors, dtype=np.uint8)
|
621 |
+
+ draw_masks(ax, img, segms, colors, with_edge=True)
|
622 |
+
+
|
623 |
+
+ if num_bboxes < segms.shape[0]:
|
624 |
+
+ segms = segms[num_bboxes:]
|
625 |
+
+ horizontal_alignment = 'center'
|
626 |
+
+ areas = []
|
627 |
+
+ positions = []
|
628 |
+
+ for mask in segms:
|
629 |
+
+ _, _, stats, centroids = cv2.connectedComponentsWithStats(
|
630 |
+
+ mask.astype(np.uint8), connectivity=8)
|
631 |
+
+ largest_id = np.argmax(stats[1:, -1]) + 1
|
632 |
+
+ positions.append(centroids[largest_id])
|
633 |
+
+ areas.append(stats[largest_id, -1])
|
634 |
+
+ areas = np.stack(areas, axis=0)
|
635 |
+
+ scales = _get_adaptive_scales(areas)
|
636 |
+
+ draw_labels(
|
637 |
+
+ ax,
|
638 |
+
+ labels[num_bboxes:],
|
639 |
+
+ positions,
|
640 |
+
+ class_names=class_names,
|
641 |
+
+ color=text_colors,
|
642 |
+
+ font_size=font_size,
|
643 |
+
+ scales=scales,
|
644 |
+
+ horizontal_alignment=horizontal_alignment)
|
645 |
+
|
646 |
+
plt.imshow(img)
|
647 |
+
|
648 |
+
- p = PatchCollection(
|
649 |
+
- polygons, facecolor='none', edgecolors=color, linewidths=thickness)
|
650 |
+
- ax.add_collection(p)
|
651 |
+
-
|
652 |
+
stream, _ = canvas.print_to_buffer()
|
653 |
+
buffer = np.frombuffer(stream, dtype='uint8')
|
654 |
+
img_rgba = buffer.reshape(height, width, 4)
|
655 |
+
@@ -191,12 +378,12 @@ def imshow_gt_det_bboxes(img,
|
656 |
+
result,
|
657 |
+
class_names=None,
|
658 |
+
score_thr=0,
|
659 |
+
- gt_bbox_color=(255, 102, 61),
|
660 |
+
- gt_text_color=(255, 102, 61),
|
661 |
+
- gt_mask_color=(255, 102, 61),
|
662 |
+
- det_bbox_color=(72, 101, 241),
|
663 |
+
- det_text_color=(72, 101, 241),
|
664 |
+
- det_mask_color=(72, 101, 241),
|
665 |
+
+ gt_bbox_color=(61, 102, 255),
|
666 |
+
+ gt_text_color=(200, 200, 200),
|
667 |
+
+ gt_mask_color=(61, 102, 255),
|
668 |
+
+ det_bbox_color=(241, 101, 72),
|
669 |
+
+ det_text_color=(200, 200, 200),
|
670 |
+
+ det_mask_color=(241, 101, 72),
|
671 |
+
thickness=2,
|
672 |
+
font_size=13,
|
673 |
+
win_name='',
|
674 |
+
@@ -206,54 +393,75 @@ def imshow_gt_det_bboxes(img,
|
675 |
+
"""General visualization GT and result function.
|
676 |
+
|
677 |
+
Args:
|
678 |
+
- img (str or ndarray): The image to be displayed.)
|
679 |
+
+ img (str | ndarray): The image to be displayed.
|
680 |
+
annotation (dict): Ground truth annotations where contain keys of
|
681 |
+
- 'gt_bboxes' and 'gt_labels' or 'gt_masks'
|
682 |
+
- result (tuple[list] or list): The detection result, can be either
|
683 |
+
+ 'gt_bboxes' and 'gt_labels' or 'gt_masks'.
|
684 |
+
+ result (tuple[list] | list): The detection result, can be either
|
685 |
+
(bbox, segm) or just bbox.
|
686 |
+
class_names (list[str]): Names of each classes.
|
687 |
+
- score_thr (float): Minimum score of bboxes to be shown. Default: 0
|
688 |
+
- gt_bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
|
689 |
+
- The tuple of color should be in BGR order. Default: (255, 102, 61)
|
690 |
+
- gt_text_color (str or tuple(int) or :obj:`Color`):Color of texts.
|
691 |
+
- The tuple of color should be in BGR order. Default: (255, 102, 61)
|
692 |
+
- gt_mask_color (str or tuple(int) or :obj:`Color`, optional):
|
693 |
+
- Color of masks. The tuple of color should be in BGR order.
|
694 |
+
- Default: (255, 102, 61)
|
695 |
+
- det_bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
|
696 |
+
- The tuple of color should be in BGR order. Default: (72, 101, 241)
|
697 |
+
- det_text_color (str or tuple(int) or :obj:`Color`):Color of texts.
|
698 |
+
- The tuple of color should be in BGR order. Default: (72, 101, 241)
|
699 |
+
- det_mask_color (str or tuple(int) or :obj:`Color`, optional):
|
700 |
+
- Color of masks. The tuple of color should be in BGR order.
|
701 |
+
- Default: (72, 101, 241)
|
702 |
+
- thickness (int): Thickness of lines. Default: 2
|
703 |
+
- font_size (int): Font size of texts. Default: 13
|
704 |
+
- win_name (str): The window name. Default: ''
|
705 |
+
- show (bool): Whether to show the image. Default: True
|
706 |
+
+ score_thr (float): Minimum score of bboxes to be shown. Default: 0.
|
707 |
+
+ gt_bbox_color (list[tuple] | tuple | str | None): Colors of bbox lines.
|
708 |
+
+ If a single color is given, it will be applied to all classes.
|
709 |
+
+ The tuple of color should be in RGB order. Default: (61, 102, 255).
|
710 |
+
+ gt_text_color (list[tuple] | tuple | str | None): Colors of texts.
|
711 |
+
+ If a single color is given, it will be applied to all classes.
|
712 |
+
+ The tuple of color should be in RGB order. Default: (200, 200, 200).
|
713 |
+
+ gt_mask_color (list[tuple] | tuple | str | None, optional): Colors of
|
714 |
+
+ masks. If a single color is given, it will be applied to all classes.
|
715 |
+
+ The tuple of color should be in RGB order. Default: (61, 102, 255).
|
716 |
+
+ det_bbox_color (list[tuple] | tuple | str | None):Colors of bbox lines.
|
717 |
+
+ If a single color is given, it will be applied to all classes.
|
718 |
+
+ The tuple of color should be in RGB order. Default: (241, 101, 72).
|
719 |
+
+ det_text_color (list[tuple] | tuple | str | None):Colors of texts.
|
720 |
+
+ If a single color is given, it will be applied to all classes.
|
721 |
+
+ The tuple of color should be in RGB order. Default: (200, 200, 200).
|
722 |
+
+ det_mask_color (list[tuple] | tuple | str | None, optional): Color of
|
723 |
+
+ masks. If a single color is given, it will be applied to all classes.
|
724 |
+
+ The tuple of color should be in RGB order. Default: (241, 101, 72).
|
725 |
+
+ thickness (int): Thickness of lines. Default: 2.
|
726 |
+
+ font_size (int): Font size of texts. Default: 13.
|
727 |
+
+ win_name (str): The window name. Default: ''.
|
728 |
+
+ show (bool): Whether to show the image. Default: True.
|
729 |
+
wait_time (float): Value of waitKey param. Default: 0.
|
730 |
+
out_file (str, optional): The filename to write the image.
|
731 |
+
- Default: None
|
732 |
+
+ Default: None.
|
733 |
+
|
734 |
+
Returns:
|
735 |
+
ndarray: The image with bboxes or masks drawn on it.
|
736 |
+
"""
|
737 |
+
assert 'gt_bboxes' in annotation
|
738 |
+
assert 'gt_labels' in annotation
|
739 |
+
- assert isinstance(
|
740 |
+
- result,
|
741 |
+
- (tuple, list)), f'Expected tuple or list, but get {type(result)}'
|
742 |
+
+ assert isinstance(result, (tuple, list, dict)), 'Expected ' \
|
743 |
+
+ f'tuple or list or dict, but get {type(result)}'
|
744 |
+
|
745 |
+
+ gt_bboxes = annotation['gt_bboxes']
|
746 |
+
+ gt_labels = annotation['gt_labels']
|
747 |
+
gt_masks = annotation.get('gt_masks', None)
|
748 |
+
if gt_masks is not None:
|
749 |
+
gt_masks = mask2ndarray(gt_masks)
|
750 |
+
|
751 |
+
+ gt_seg = annotation.get('gt_semantic_seg', None)
|
752 |
+
+ if gt_seg is not None:
|
753 |
+
+ pad_value = 255 # the padding value of gt_seg
|
754 |
+
+ sem_labels = np.unique(gt_seg)
|
755 |
+
+ all_labels = np.concatenate((gt_labels, sem_labels), axis=0)
|
756 |
+
+ all_labels, counts = np.unique(all_labels, return_counts=True)
|
757 |
+
+ stuff_labels = all_labels[np.logical_and(counts < 2,
|
758 |
+
+ all_labels != pad_value)]
|
759 |
+
+ stuff_masks = gt_seg[None] == stuff_labels[:, None, None]
|
760 |
+
+ gt_labels = np.concatenate((gt_labels, stuff_labels), axis=0)
|
761 |
+
+ gt_masks = np.concatenate((gt_masks, stuff_masks.astype(np.uint8)),
|
762 |
+
+ axis=0)
|
763 |
+
+ # If you need to show the bounding boxes,
|
764 |
+
+ # please comment the following line
|
765 |
+
+ # gt_bboxes = None
|
766 |
+
+
|
767 |
+
img = mmcv.imread(img)
|
768 |
+
|
769 |
+
img = imshow_det_bboxes(
|
770 |
+
img,
|
771 |
+
- annotation['gt_bboxes'],
|
772 |
+
- annotation['gt_labels'],
|
773 |
+
+ gt_bboxes,
|
774 |
+
+ gt_labels,
|
775 |
+
gt_masks,
|
776 |
+
class_names=class_names,
|
777 |
+
bbox_color=gt_bbox_color,
|
778 |
+
@@ -264,25 +472,38 @@ def imshow_gt_det_bboxes(img,
|
779 |
+
win_name=win_name,
|
780 |
+
show=False)
|
781 |
+
|
782 |
+
- if isinstance(result, tuple):
|
783 |
+
- bbox_result, segm_result = result
|
784 |
+
- if isinstance(segm_result, tuple):
|
785 |
+
- segm_result = segm_result[0] # ms rcnn
|
786 |
+
+ if not isinstance(result, dict):
|
787 |
+
+ if isinstance(result, tuple):
|
788 |
+
+ bbox_result, segm_result = result
|
789 |
+
+ if isinstance(segm_result, tuple):
|
790 |
+
+ segm_result = segm_result[0] # ms rcnn
|
791 |
+
+ else:
|
792 |
+
+ bbox_result, segm_result = result, None
|
793 |
+
+
|
794 |
+
+ bboxes = np.vstack(bbox_result)
|
795 |
+
+ labels = [
|
796 |
+
+ np.full(bbox.shape[0], i, dtype=np.int32)
|
797 |
+
+ for i, bbox in enumerate(bbox_result)
|
798 |
+
+ ]
|
799 |
+
+ labels = np.concatenate(labels)
|
800 |
+
+
|
801 |
+
+ segms = None
|
802 |
+
+ if segm_result is not None and len(labels) > 0: # non empty
|
803 |
+
+ segms = mmcv.concat_list(segm_result)
|
804 |
+
+ segms = mask_util.decode(segms)
|
805 |
+
+ segms = segms.transpose(2, 0, 1)
|
806 |
+
else:
|
807 |
+
- bbox_result, segm_result = result, None
|
808 |
+
-
|
809 |
+
- bboxes = np.vstack(bbox_result)
|
810 |
+
- labels = [
|
811 |
+
- np.full(bbox.shape[0], i, dtype=np.int32)
|
812 |
+
- for i, bbox in enumerate(bbox_result)
|
813 |
+
- ]
|
814 |
+
- labels = np.concatenate(labels)
|
815 |
+
-
|
816 |
+
- segms = None
|
817 |
+
- if segm_result is not None and len(labels) > 0: # non empty
|
818 |
+
- segms = mmcv.concat_list(segm_result)
|
819 |
+
- segms = mask_util.decode(segms)
|
820 |
+
- segms = segms.transpose(2, 0, 1)
|
821 |
+
+ assert class_names is not None, 'We need to know the number ' \
|
822 |
+
+ 'of classes.'
|
823 |
+
+ VOID = len(class_names)
|
824 |
+
+ bboxes = None
|
825 |
+
+ pan_results = result['pan_results']
|
826 |
+
+ # keep objects ahead
|
827 |
+
+ ids = np.unique(pan_results)[::-1]
|
828 |
+
+ legal_indices = ids != VOID
|
829 |
+
+ ids = ids[legal_indices]
|
830 |
+
+ labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)
|
831 |
+
+ segms = (pan_results[None] == ids[:, None, None])
|
832 |
+
|
833 |
+
img = imshow_det_bboxes(
|
834 |
+
img,
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mmcv-full==1.5.0
|
2 |
+
mmdet==2.24.1
|
3 |
+
numpy==1.22.4
|
4 |
+
opencv-python-headless==4.5.5.64
|
5 |
+
openmim==0.1.5
|
6 |
+
timm==0.5.4
|
7 |
+
torch==1.11.0
|
8 |
+
torchvision==0.12.0
|