|
|
|
|
|
from __future__ import annotations |
|
|
|
import os |
|
import pathlib |
|
import shlex |
|
import subprocess |
|
|
|
if os.getenv("SYSTEM") == "spaces": |
|
subprocess.run(shlex.split("pip install click==7.1.2")) |
|
subprocess.run(shlex.split("pip install typer==0.9.4")) |
|
|
|
import mim |
|
|
|
mim.uninstall("mmcv-full", confirm_yes=True) |
|
mim.install("mmcv-full==1.5.0", is_yes=True) |
|
|
|
subprocess.run(shlex.split("pip uninstall -y opencv-python")) |
|
subprocess.run(shlex.split("pip uninstall -y opencv-python-headless")) |
|
subprocess.run(shlex.split("pip install opencv-python-headless==4.8.0.74")) |
|
|
|
with open("patch") as f: |
|
subprocess.run(shlex.split("patch -p1"), cwd="CBNetV2", stdin=f) |
|
subprocess.run("mv palette.py CBNetV2/mmdet/core/visualization/".split()) |
|
|
|
|
|
import gradio as gr |
|
|
|
from model import Model |
|
|
|
DESCRIPTION = "# [CBNetV2](https://github.com/VDIGPKU/CBNetV2)" |
|
|
|
model = Model() |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
input_image = gr.Image(label="Input Image", type="numpy") |
|
with gr.Row(): |
|
detector_name = gr.Dropdown( |
|
label="Detector", choices=list(model.models.keys()), value=model.model_name |
|
) |
|
with gr.Row(): |
|
detect_button = gr.Button("Detect") |
|
detection_results = gr.State() |
|
with gr.Column(): |
|
with gr.Row(): |
|
detection_visualization = gr.Image(label="Detection Result", type="numpy") |
|
with gr.Row(): |
|
visualization_score_threshold = gr.Slider( |
|
label="Visualization Score Threshold", minimum=0, maximum=1, step=0.05, value=0.3 |
|
) |
|
with gr.Row(): |
|
redraw_button = gr.Button("Redraw") |
|
|
|
with gr.Row(): |
|
paths = sorted(pathlib.Path("images").rglob("*.jpg")) |
|
gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image) |
|
|
|
detector_name.change(fn=model.set_model_name, inputs=detector_name) |
|
detect_button.click( |
|
fn=model.detect_and_visualize, |
|
inputs=[ |
|
input_image, |
|
visualization_score_threshold, |
|
], |
|
outputs=[ |
|
detection_results, |
|
detection_visualization, |
|
], |
|
) |
|
redraw_button.click( |
|
fn=model.visualize_detection_results, |
|
inputs=[ |
|
input_image, |
|
detection_results, |
|
visualization_score_threshold, |
|
], |
|
outputs=detection_visualization, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=10).launch() |
|
|