NLPV's picture
Update app.py
7e3c140 verified
raw
history blame
4.43 kB
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
import tf_keras as keras
import pandas as pd
from tensorflow.keras.models import load_model
import classifier_data_lib
import tokenization
import joblib
from deep_translator import GoogleTranslator
import sys
import os
import gradio as gr
model = load_model('ISCO-Coder-BERT.h5', custom_objects={'KerasLayer': hub.KerasLayer})
bert_layer = hub.KerasLayer("https://kaggle.com/models/tensorflow/bert/TensorFlow2/en-uncased-l-12-h-768-a-12/1",trainable=True)
vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy()
do_lower_case = bert_layer.resolved_object.do_lower_case.numpy()
tokenizer = tokenization.FullTokenizer(vocab_file,do_lower_case)
# Parameters
max_seq_length = 128
dummy_label = 100
label_list = list(pd.read_excel('label_list.xlsx')['label_list'])
map_data = pd.read_excel("ISCO-08 EN Structure and definitions.xlsx")
label_encoder = joblib.load('label_encoder.joblib')
# Define a function to preprocess the new data
def get_feature_new(text, max_seq_length, tokenizer, dummy_label):
example = classifier_data_lib.InputExample(guid=None,
text_a=text.numpy().decode('utf-8'),
text_b=None,
label=dummy_label) # Use a valid dummy label
feature = classifier_data_lib.convert_single_example(0, example, label_list, max_seq_length, tokenizer)
return feature.input_ids, feature.input_mask, feature.segment_ids
def get_feature_map_new(text):
input_ids, input_mask, segment_ids = tf.py_function(
lambda text: get_feature_new(text, max_seq_length, tokenizer, dummy_label),
inp=[text],
Tout=[tf.int32, tf.int32, tf.int32]
)
input_ids.set_shape([max_seq_length])
input_mask.set_shape([max_seq_length])
segment_ids.set_shape([max_seq_length])
x = {'input_word_ids': input_ids,
'input_mask': input_mask,
'input_type_ids': segment_ids}
return x
def preprocess_new_data(texts):
dataset = tf.data.Dataset.from_tensor_slices((texts,))
dataset = dataset.map(get_feature_map_new,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(32, drop_remainder=False)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def launch(text_input):
# Load the label encoder
#label_encoder = joblib.load('label_encoderV2.joblib')
# Preprocess the new data
try:
text_input = GoogleTranslator(source = 'auto',target = 'en').translate(text_input)
except:
text_input = text_input
sample_example = [text_input]
new_data_dataset = preprocess_new_data(sample_example)
# Assuming you have a model already loaded (add model loading code if needed)
# Make predictions on the new data
predictions = model.predict(new_data_dataset)
# Decode the predictions
predicted_classes = [label_list[np.argmax(pred)] for pred in predictions]
# Calculate the highest probabilities
highest_probabilities = [max(instance) for instance in predictions]
# Decode labels using the label encoder
decoded_labels = label_encoder.inverse_transform(predicted_classes)
# Retrieve the ISCO description based on the decoded label
isco_description = map_data[map_data['ISCO 08 Code'] == decoded_labels[0]]['Title EN'].values
# Print for debugging (optional)
print(f"Most likely ISCO code is {decoded_labels[0]} and probability is {highest_probabilities[0]}")
print(text_input)
# Create descriptive text for the output
result_text = (
f"Predicted ISCO Code: {decoded_labels[0]}\n"
f"Probability: {highest_probabilities[0]:.2f}\n"
f"ISCO Description: {isco_description[0] if len(isco_description) > 0 else 'Description not found'}"
)
return result_text
# Define the Gradio interface
iface = gr.Interface(
fn=launch,
inputs=gr.Textbox(
lines=2,
placeholder="Enter job title in any language (e.g., Software Engineer) AND/OR description here (e.g., Develops and maintains software applications)..."
),
outputs=gr.Textbox(
lines=4,
placeholder="Predicted ISCO Code: <result>\nProbability: <result>\nISCO Description: <result>"
)
)
iface.launch()