Spaces:
Sleeping
Sleeping
import numpy as np | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
import tf_keras as keras | |
import pandas as pd | |
from tensorflow.keras.models import load_model | |
import classifier_data_lib | |
import tokenization | |
import joblib | |
from deep_translator import GoogleTranslator | |
import sys | |
import os | |
import gradio as gr | |
model = load_model('ISCO-Coder-BERT.h5', custom_objects={'KerasLayer': hub.KerasLayer}) | |
bert_layer = hub.KerasLayer("https://kaggle.com/models/tensorflow/bert/TensorFlow2/en-uncased-l-12-h-768-a-12/1",trainable=True) | |
vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy() | |
do_lower_case = bert_layer.resolved_object.do_lower_case.numpy() | |
tokenizer = tokenization.FullTokenizer(vocab_file,do_lower_case) | |
# Parameters | |
max_seq_length = 128 | |
dummy_label = 100 | |
label_list = list(pd.read_excel('label_list.xlsx')['label_list']) | |
map_data = pd.read_excel("ISCO-08 EN Structure and definitions.xlsx") | |
label_encoder = joblib.load('label_encoder.joblib') | |
# Define a function to preprocess the new data | |
def get_feature_new(text, max_seq_length, tokenizer, dummy_label): | |
example = classifier_data_lib.InputExample(guid=None, | |
text_a=text.numpy().decode('utf-8'), | |
text_b=None, | |
label=dummy_label) # Use a valid dummy label | |
feature = classifier_data_lib.convert_single_example(0, example, label_list, max_seq_length, tokenizer) | |
return feature.input_ids, feature.input_mask, feature.segment_ids | |
def get_feature_map_new(text): | |
input_ids, input_mask, segment_ids = tf.py_function( | |
lambda text: get_feature_new(text, max_seq_length, tokenizer, dummy_label), | |
inp=[text], | |
Tout=[tf.int32, tf.int32, tf.int32] | |
) | |
input_ids.set_shape([max_seq_length]) | |
input_mask.set_shape([max_seq_length]) | |
segment_ids.set_shape([max_seq_length]) | |
x = {'input_word_ids': input_ids, | |
'input_mask': input_mask, | |
'input_type_ids': segment_ids} | |
return x | |
def preprocess_new_data(texts): | |
dataset = tf.data.Dataset.from_tensor_slices((texts,)) | |
dataset = dataset.map(get_feature_map_new, | |
num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
dataset = dataset.batch(32, drop_remainder=False) | |
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) | |
return dataset | |
def launch(text_input): | |
# Load the label encoder | |
#label_encoder = joblib.load('label_encoderV2.joblib') | |
# Preprocess the new data | |
try: | |
text_input = GoogleTranslator(source = 'auto',target = 'en').translate(text_input) | |
except: | |
text_input = text_input | |
sample_example = [text_input] | |
new_data_dataset = preprocess_new_data(sample_example) | |
# Assuming you have a model already loaded (add model loading code if needed) | |
# Make predictions on the new data | |
predictions = model.predict(new_data_dataset) | |
# Decode the predictions | |
predicted_classes = [label_list[np.argmax(pred)] for pred in predictions] | |
# Calculate the highest probabilities | |
highest_probabilities = [max(instance) for instance in predictions] | |
# Decode labels using the label encoder | |
decoded_labels = label_encoder.inverse_transform(predicted_classes) | |
# Retrieve the ISCO description based on the decoded label | |
isco_description = map_data[map_data['ISCO 08 Code'] == decoded_labels[0]]['Title EN'].values | |
# Print for debugging (optional) | |
print(f"Most likely ISCO code is {decoded_labels[0]} and probability is {highest_probabilities[0]}") | |
print(text_input) | |
# Create descriptive text for the output | |
result_text = ( | |
f"Predicted ISCO Code: {decoded_labels[0]}\n" | |
f"Probability: {highest_probabilities[0]:.2f}\n" | |
f"ISCO Description: {isco_description[0] if len(isco_description) > 0 else 'Description not found'}" | |
) | |
return result_text | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=launch, | |
inputs=gr.Textbox( | |
lines=2, | |
placeholder="Enter job title in any language (e.g., Software Engineer) AND/OR description here (e.g., Develops and maintains software applications)..." | |
), | |
outputs=gr.Textbox( | |
lines=4, | |
placeholder="Predicted ISCO Code: <result>\nProbability: <result>\nISCO Description: <result>" | |
) | |
) | |
iface.launch() | |