Spaces:
Runtime error
Runtime error
File size: 9,246 Bytes
bbb6128 dabea56 bbb6128 dabea56 35838c1 dabea56 fe3971d dabea56 9c720c8 dabea56 fe3971d dabea56 8a4f028 dabea56 8a4f028 dabea56 8a4f028 dabea56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
from flask import Flask, request, jsonify ,send_file
from PIL import Image
import requests
import base64
import spaces
import multiprocessing
from loadimg import load_img
from io import BytesIO
import numpy as np
import insightface
import onnxruntime as ort
import huggingface_hub
from SegCloth import segment_clothing
from transparent_background import Remover
import threading
import logging
import uuid
from transformers import AutoModelForImageSegmentation,AutoModelForCausalLM, AutoProcessor
import torch
from torchvision import transforms
import subprocess
import logging
import json
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
app = Flask(__name__)
kwargs = {}
kwargs['torch_dtype'] = torch.bfloat16
models = {
"microsoft/Phi-3-vision-128k-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-vision-128k-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
}
processors = {
"microsoft/Phi-3-vision-128k-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3-vision-128k-instruct", trust_remote_code=True)
}
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"
def get_image_from_url(url):
try:
response = requests.get(url)
response.raise_for_status() # Vérifie les erreurs HTTP
img = Image.open(BytesIO(response.content))
return img
except Exception as e:
logging.error(f"Error fetching image from URL: {e}")
raise
# Function to decode a base64 image to PIL.Image.Image
def decode_image_from_base64(image_data):
image_data = base64.b64decode(image_data)
image = Image.open(BytesIO(image_data)).convert("RGB")
return image
# Function to encode a PIL image to base64
def encode_image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="PNG") # Use PNG for compatibility with RGBA
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def extract_image(image_data):
# Vérifie si l'image est en base64 ou URL
if image_data.startswith('http://') or image_data.startswith('https://'):
return get_image_from_url(image_data) # Télécharge l'image depuis l'URL
else:
return decode_image_from_base64(image_data) # Décode l'image base64
@spaces.GPU
def process_vision(image, text_input=None, model_id="microsoft/Phi-3-vision-128k-instruct"):
model = models[model_id]
processor = processors[model_id]
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
image = image.convert("RGB")
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
generate_ids = model.generate(**inputs,
max_new_tokens=4128,
eos_token_id=processor.tokenizer.eos_token_id,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False)[0]
return response
@app.route('/api/vision', methods=['POST'])
def process_api_vision():
try:
data = request.json
image = data['image']
prompt = data['prompt']
image = extract_image(image)
result = process_vision(image,prompt)
# Remove ```json and ``` markers
if result.startswith("```json"):
result = result[7:] # Remove the leading ```json
if result.endswith("```"):
result = result[:-3] # Remove the trailing ```
# Convert the string result to a Python dictionary
try:
logging.info(result)
result_dict = json.loads(result)
except json.JSONDecodeError as e:
logging.error(f"JSON decoding error: {e}")
return jsonify({'error': 'Invalid JSON format in the response'}), 500
return jsonify(result_dict)
except Exception as e:
logging.error(f"Error occurred: {e}")
return jsonify({'error': str(e)}), 500
# Configure logging
logging.basicConfig(level=logging.INFO)
# Load the model lazily
model = None
detector = None
def load_model():
global model, detector
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx")
options = ort.SessionOptions()
options.intra_op_num_threads = 8
options.inter_op_num_threads = 8
session = ort.InferenceSession(
path, sess_options=options, providers=["CPUExecutionProvider", "CUDAExecutionProvider"]
)
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session)
model.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
detector = model
logging.info("Model loaded successfully.")
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
# Function to decode a base64 image to PIL.Image.Image
def decode_image_from_base64(image_data):
image_data = base64.b64decode(image_data)
image = Image.open(BytesIO(image_data)).convert("RGB")
return image
# Function to encode a PIL image to base64
def encode_image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="PNG") # Use PNG for compatibility with RGBA
return base64.b64encode(buffered.getvalue()).decode('utf-8')
@spaces.GPU
def rm_background(image):
im = load_img(image, output_type="pil")
im = im.convert("RGB")
image_size = im.size
origin = im.copy()
image = load_img(im)
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return (image)
@spaces.GPU
def remove_background(image):
remover = Remover()
if isinstance(image, Image.Image):
output = remover.process(image)
elif isinstance(image, np.ndarray):
image_pil = Image.fromarray(image)
output = remover.process(image_pil)
else:
raise TypeError("Unsupported image type")
return output
@spaces.GPU
def detect_and_segment_persons(image, clothes):
img = np.array(image)
img = img[:, :, ::-1] # RGB -> BGR
if detector is None:
load_model() # Ensure the model is loaded
bboxes, kpss = detector.detect(img)
if bboxes.shape[0] == 0:
return [save_image(rm_background(image))]
height, width, _ = img.shape
bboxes = np.round(bboxes[:, :4]).astype(int)
bboxes[:, 0] = np.clip(bboxes[:, 0], 0, width)
bboxes[:, 1] = np.clip(bboxes[:, 1], 0, height)
bboxes[:, 2] = np.clip(bboxes[:, 2], 0, width)
bboxes[:, 3] = np.clip(bboxes[:, 3], 0, height)
all_segmented_images = []
for i in range(bboxes.shape[0]):
bbox = bboxes[i]
x1, y1, x2, y2 = bbox
person_img = img[y1:y2, x1:x2]
pil_img = Image.fromarray(person_img[:, :, ::-1])
img_rm_background = rm_background(pil_img)
segmented_result = segment_clothing(img_rm_background, clothes)
image_paths = [save_image(img) for img in segmented_result]
print(image_paths)
all_segmented_images.extend(image_paths)
return all_segmented_images
@app.route('/', methods=['GET'])
def welcome():
return "Welcome to Clothing Segmentation API"
@app.route('/api/detect', methods=['POST'])
def detect():
try:
data = request.json
image_base64 = data['image']
image = decode_image_from_base64(image_base64)
clothes = ["Upper-clothes", "Skirt", "Pants", "Dress"]
result = detect_and_segment_persons(image, clothes)
return jsonify({'images': result})
except Exception as e:
logging.error(f"Error occurred: {e}")
return jsonify({'error': str(e)}), 500
# Route pour récupérer l'image générée
@app.route('/api/get_image/<image_id>', methods=['GET'])
def get_image(image_id):
# Construire le chemin complet de l'image
image_path = image_id # Assurez-vous que le nom de fichier correspond à celui que vous avez utilisé lors de la sauvegarde
# Renvoyer l'image
try:
return send_file(image_path, mimetype='image/png')
except FileNotFoundError:
return jsonify({'error': 'Image not found'}), 404
if __name__ == "__main__":
app.run(debug=True, host="0.0.0.0", port=7860) |